
Pseudocode Edition



Copyright © 2019-2024 Daniele Penazzo

2D Game Development: From Zero To Hero (pseudocode edition, version 0.7.10) is distributed under the terms of

the Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 license.

If you want to view a copy of the license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or check the

LICENSE file in the book repository.

The PDF and EPub releases of this book can be found at the following address:

• https://therealpenaz91.itch.io/2dgd-f0th (Official Itch.io Page)

This book’s source code can be found in the following official repositories:

• https://gitlab.com/Penaz/2dgd_f0th (Official GitLab Repository)

• https://github.com/2DGD-F0TH/2DGD_F0TH/ (Official GitHub Mirror Repository)

NO AI TRAINING: any use of this publication to train generative artificial intelligence (AI) technologies to generate

text is expressly prohibited.

This work shall be attributed to Daniele Penazzo and the ”2D Game Development: From Zero To Hero” community,

to see a full list of the contributors, please check the CONTRIBUTORS file in the repository, or head to the Contributors

section in this book.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://therealpenaz91.itch.io/2dgd-f0th
https://gitlab.com/Penaz/2dgd_f0th
https://github.com/2DGD-F0TH/2DGD_F0TH/


Perseverance is the backbone of success.

Anonymous

To my family

To my friends, both international and not

To the ones who never give up

Daniele Penazzo





Contents

1 Foreword 1

2 Introduction 2

2.1 Why another game development book? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Conventions used in this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Logic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.2 Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.3 Block Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.4 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.5 Engine Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.6 About editions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Structure of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The Maths Behind Game Development 9

3.1 Some useful symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The modulo operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Powers and Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 You can add or subtract any number on both sides . . . . . . . . . . . . . . . . . . . . . 11

3.4.2 You can multiple or divide any non-zero number on both sides . . . . . . . . . . . . . . . 11

3.5 Exponentiations and Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.8 The Cartesian Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.9 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.9.1 Adding and Subtracting Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.9.2 Scaling Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.9.3 Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.9.4 Vector Length and Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.9.5 “Clamping” a Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.10 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.10.1 Convex vs Concave polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.10.2 Self-intersecting polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.10.3 Straight Lines and their equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.10.3.1 Getting the equation of a straight line, given two points . . . . . . . . . . . . . . 21

3.10.3.2 Getting the equation, given the slope and a point . . . . . . . . . . . . . . . . . . 22

3.10.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.10.4.1 Projecting arbitrary lines on the axes . . . . . . . . . . . . . . . . . . . . . . . . 24

3.11 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

III



2D Game Development: From Zero To Hero

3.11.1 What is a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.11.2 Matrix sum and subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11.3 Multiplication by a scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11.4 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11.5 Multiplication between matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11.6 Other uses for matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12.1 Radians vs Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12.2 Sine, Cosine and Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12.3 Pythagorean Trigonometric Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12.4 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12.5 Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12.6 Trigonometric Addition and subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12.7 Double-Angle Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12.8 Inverse Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.13 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.13.1 Newton-Raphson method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.14 Coordinate Systems on computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15 Transformation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.15.1 Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.15.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.15.2.1 Choosing the direction of the rotation . . . . . . . . . . . . . . . . . . . . . . . . 37

3.15.2.2 Rotating referred to an arbitrary point . . . . . . . . . . . . . . . . . . . . . . . . 38

3.15.3 Shearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.16 Basics of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.16.1 A simple definition of probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.16.2 Probability of independent events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.16.3 Probability of mutually exclusive events . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.16.4 Probability of non-mutually exclusive events . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.16.5 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.16.6 Uniform Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.16.7 How probability is used in games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.16.8 Tiered Prize Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.16.8.1 Introducing a “luck” stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Some Computer Science Fundamentals 48

4.1 Number representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 The most used representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1.1 Decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1.2 Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CONTENTS IV



2D Game Development: From Zero To Hero

4.1.1.3 Octal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1.4 Hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Converting between decimal and binary . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2.1 Two’s complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2.2 Floating point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Converting between binary and octal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.4 Gray Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Basics of Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Truth tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Common operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2.1 AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2.2 OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2.3 NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2.4 XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3 Logic operations vs bitwise operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3.1 Packing more information with less . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4 De Morgan’s Laws and Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.1 Classifying programming languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.1.1 By how they build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.1.2 By Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1.3 By the way types are determined . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1.4 By the “strength” of typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1.5 By memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 Languages available for this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Computers are (not) precise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Catastrophic cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Random Numbers are not really random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7.1 How to seed a random number generator . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Estimating the complexity of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8.1 O(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8.2 O(log(n)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8.3 O(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8.4 O(n·log(n)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8.5 O(n2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8.6 O(2n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 A primer on calculating the order of your algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9.1 Some basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

CONTENTS V



2D Game Development: From Zero To Hero

4.9.2 What happens when we have more than one big-O? . . . . . . . . . . . . . . . . . . . . . 76

4.9.3 A problem with asymptotic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9.4 What do we do with recursive algorithms? . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9.5 How do big-O estimates compare to each other? . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Simplifying your conditionals with Karnaugh Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10.1 “Don’t care”s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10.2 A more complex map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10.3 Guided Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Object Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11.3 Abstraction and Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11.4 Inheritance and Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11.5 Mixins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11.6 The Diamond Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11.7 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11.8 Composition vs. Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11.9 “Composition over Inheritance” design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11.10 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.11.11 The DRY Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.11.12 SOLID Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.12 Designing entities as data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.13 Reading UML diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.13.1 Use Case Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.13.1.1 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.13.1.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.13.1.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13.1.4 Sub-Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13.2 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13.2.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13.2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.13.2.3 Relationships between entities of the class diagram . . . . . . . . . . . . . . . . . 98

4.13.2.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

4.13.3 Activity Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

4.13.3.1 Start and End Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

4.13.3.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

4.13.3.3 Decisions (Conditionals) and loops . . . . . . . . . . . . . . . . . . . . . . . . . .102

4.13.3.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

4.13.3.5 Swimlanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

4.13.3.6 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

CONTENTS VI



2D Game Development: From Zero To Hero

4.13.3.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

4.13.3.8 A note on activity diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

4.13.4 Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

4.13.4.1 Lifelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

4.13.4.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

4.13.4.3 Object Instantiation and Destruction . . . . . . . . . . . . . . . . . . . . . . . . .108

4.13.4.4 Grouping and loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

4.13.4.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

4.13.5 Other diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

4.14 Generic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

4.15 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

4.15.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

4.15.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

4.15.2.1 Depth-first Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

4.15.2.2 Breadth-first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

4.15.3 Dynamic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

4.15.3.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

4.15.4 Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

4.15.4.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

4.15.5 Doubly-Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

4.15.6 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

4.15.7 Binary Search Trees (BST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

4.15.8 Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

4.15.9 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

4.15.10 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

4.15.11 Circular Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

4.16 The principle of locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

4.17 Treating multidimensional structures like one-dimensional ones . . . . . . . . . . . . . . . . . . .131

4.18 Data Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

4.19 Introduction to Multi-Tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

4.19.1 Multi-Threading vs Multi-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

4.19.2 Coroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

4.20 Introduction to Multi-Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

4.20.1 What is Multi-Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

4.20.2 Why Multi-Threading? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

4.20.3 Thread Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

4.20.3.1 Race conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

4.20.3.2 Critical Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

4.20.4 Ensuring determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

4.20.4.1 Immutable Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

CONTENTS VII



2D Game Development: From Zero To Hero

4.20.4.2 Mutex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

4.20.4.3 Atomic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

5 A Game Design Dictionary 144

5.1 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

5.1.1 Arcade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

5.1.2 Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

5.1.3 Personal Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

5.1.4 Mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

5.1.5 Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

5.2 Input Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

5.2.1 Mouse and Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

5.2.2 Gamepad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

5.2.3 Touch Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

5.2.4 Dedicated Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

5.2.5 Other Input Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

5.3 Game Genres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

5.3.1 Shooters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

5.3.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

5.3.3 Platformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

5.3.4 RPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

5.3.5 MMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

5.3.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

5.3.7 Rhythm Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

5.3.8 Visual novels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

5.3.9 Puzzle games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

5.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

5.4.1 Emergent Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

6 Project Management Basics and tips 155

6.1 The figures of game design and development . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

6.1.1 Producer/Project Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

6.1.2 Game Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

6.1.3 Writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

6.1.4 Developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

6.1.5 Visual Artist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

6.1.6 Sound Artist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

6.1.7 Marketing/Public Relations Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

6.1.8 Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

6.2 Some general tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

6.2.1 Be careful of feature creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

CONTENTS VIII



2D Game Development: From Zero To Hero

6.2.2 On project duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

6.2.3 Brainstorming: the good, the bad and the ugly . . . . . . . . . . . . . . . . . . . . . . .161

6.2.4 On Sequels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

6.3 Common Errors and Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

6.3.1 Losing motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

6.3.2 The “Side Project” pitfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

6.3.3 Making a game “in isolation” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

6.3.4 (Mis)Handling Criticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

6.3.4.1 Misusing of the Digital Millennium Copyright Act . . . . . . . . . . . . . . . . . .163

6.3.5 Not letting others test your game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

6.3.6 Being perfectionist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

6.3.7 Using the wrong engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

6.4 Software Life Cycle Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

6.4.1 Iteration versus Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

6.4.2 Waterfall Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

6.4.3 Incremental Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

6.4.4 Evolutionary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

6.4.5 Agile Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

6.4.5.1 User Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

6.4.5.2 Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

6.4.5.3 Kanban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

6.4.5.4 ScrumBan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

6.4.6 Lean Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

6.4.7 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

6.5 Version Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

6.6 Metrics and dashboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

6.6.1 SLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

6.6.2 Cyclomatic Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

6.6.2.1 How cyclomatic complexity is calculated . . . . . . . . . . . . . . . . . . . . . .173

6.6.3 Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

6.6.4 Code Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

6.6.5 Coding Style infractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

6.6.6 Depth of Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

6.6.7 Number of methods / fields / variables . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

6.6.8 Number of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

6.6.9 Other metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

7 Writing a Game Design Document 178

7.1 What is a Game Design Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

7.2 Possible sections of a Game Design Document . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

CONTENTS IX



2D Game Development: From Zero To Hero

7.2.1 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

7.2.2 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

7.2.3 Storyline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

7.2.3.1 The theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

7.2.3.2 Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

7.2.4 Levels and Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

7.2.5 Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

7.2.5.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

7.2.5.2 Game Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

7.2.5.3 Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

7.2.5.4 Items/Powerups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

7.2.5.5 Difficulty Management and Progression . . . . . . . . . . . . . . . . . . . . . . .182

7.2.5.6 Losing Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

7.2.6 Graphic Style and Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

7.2.7 Sound and Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

7.2.8 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

7.2.9 Game Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

7.2.10 Accessibility Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

7.2.11 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

7.2.12 Marketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

7.2.12.1 Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

7.2.12.2 Available Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

7.2.12.3 Monetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

7.2.12.4 Internationalization and Localization . . . . . . . . . . . . . . . . . . . . . . . . .187

7.2.13 Other/Random Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

7.3 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

8 The Game Loop 190

8.1 The Input-Update-Draw Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

8.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191

8.2.1 Events vs Real Time Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191

8.3 Timing your loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

8.3.1 What is a time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

8.3.2 Fixed Time Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

8.3.3 Variable Time Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

8.3.4 Semi-fixed Time Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

8.3.5 Frame Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194

8.3.6 Frame Skipping/Dropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

8.3.7 Multi-threaded Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

8.4 Issues and possible solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

CONTENTS X



2D Game Development: From Zero To Hero

8.4.1 Frame/Screen Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

8.5 Drawing to screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

8.5.1 Clearing the screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197

9 Collision Detection and Reaction 199

9.1 Why Collision Detection is done in multiple passes . . . . . . . . . . . . . . . . . . . . . . . . . .199

9.2 Narrow-Phase Collision Detection: did it really collide? . . . . . . . . . . . . . . . . . . . . . . . .199

9.2.1 Collision Between Two Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200

9.2.2 Collision Between A Point and a Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

9.2.3 Collision Between Two Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

9.2.4 Collision Between Two Axis-Aligned Rectangles (AABB) . . . . . . . . . . . . . . . . . . .204

9.2.5 Line/Point Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

9.2.6 Line/Circle Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

9.2.7 Point/Rectangle Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

9.2.8 Point/Triangle Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

9.2.9 Circle/Rectangle Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

9.2.10 Line/Line Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

9.2.11 Line/Rectangle Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

9.2.12 Point/Polygon Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218

9.2.12.1 Jordan Curve Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218

9.2.12.2 Thinking outside the box: polygon triangulation . . . . . . . . . . . . . . . . . . .220

9.2.12.3 Bounding Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

9.2.12.4 Point/Polygon collision detection using triangulation . . . . . . . . . . . . . . . . .223

9.2.13 Circle/Polygon Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

9.2.14 Line/Polygon Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

9.2.15 Polygon/Polygon Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229

9.2.16 Non-convex polygons collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

9.2.16.1 Polygon triangulation: the return . . . . . . . . . . . . . . . . . . . . . . . . . .232

9.2.17 Pixel-Perfect collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

9.3 Broad-phase collision detection: is a collision even possible? . . . . . . . . . . . . . . . . . . . .234

9.3.1 The Brute Force Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

9.3.2 Building Quad Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

9.3.2.1 A more precise definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

9.3.2.2 Querying quad trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

9.3.3 Building AABB-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

9.3.3.1 Querying AABB-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239

9.3.4 Collision groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

9.4 Other Collision Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

9.4.1 Calculating the position of tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

9.4.2 The “Tile + Offset” Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

CONTENTS XI



2D Game Development: From Zero To Hero

9.5 Collision Reaction/Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

9.5.1 HitBoxes vs HurtBoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

9.5.2 Collision Reaction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

9.5.2.1 A naive approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247

9.5.2.2 Shallow-axis based reaction method . . . . . . . . . . . . . . . . . . . . . . . . .249

9.5.2.3 Interleaving single-axis movement and collision detection . . . . . . . . . . . . .251

9.5.2.4 The “Snapshot” Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252

9.5.3 When two moving items collide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

9.6 Common Issues with time-stepping Collision Detection . . . . . . . . . . . . . . . . . . . . . . .254

9.6.1 The “Bullet Through Paper” problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254

9.6.2 Precision Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254

9.6.3 One-way obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

9.7 Separating Axis Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

9.7.1 Why only convex polygons? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256

9.7.2 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

9.7.2.1 Finding the axes to analyze . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

9.7.2.2 Projecting the shapes into the axes and exiting the algorithm . . . . . . . . . . . .259

9.7.2.3 From arbitrary axes to “x and y” . . . . . . . . . . . . . . . . . . . . . . . . . . .260

9.8 Ray Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260

9.8.1 What is Ray Casting? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260

9.8.2 Other uses for ray casting: Pseudo-3D environments . . . . . . . . . . . . . . . . . . . .261

10 Scene Trees 262

10.1 What is a scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262

10.2 Scene trees and their functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262

10.2.1 How scene trees can make drawing entities easier . . . . . . . . . . . . . . . . . . . . .262

10.3 Implementing a scene tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

11 Cameras 264

11.1 Screen Space vs. Game Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

11.2 Cameras and projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265

11.3 Most used camera transitions and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

11.3.1 Static Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

11.3.2 Grid Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

11.3.3 Position-Tracking Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

11.3.3.1 Horizontal-Tracking Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

11.3.3.2 Full-Tracking Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

11.3.4 Camera Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

11.3.5 Look-Ahead Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

11.3.6 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

11.4 Clamping your camera position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

CONTENTS XII



2D Game Development: From Zero To Hero

12 Game Design Tips 271

12.1 Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271

12.1.1 Do not pad tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271

12.1.2 Integrate tutorials in the lore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271

12.1.3 Let the player explore the controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271

12.2 Consolidating and refreshing the game mechanics . . . . . . . . . . . . . . . . . . . . . . . . . .272

12.2.1 Remind the player about the mechanics they learned . . . . . . . . . . . . . . . . . . . .272

12.2.2 Introduce new ways to use old mechanics . . . . . . . . . . . . . . . . . . . . . . . . . .272

12.3 Rewarding the player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

12.3.1 Reward the player for their “lateral thinking” . . . . . . . . . . . . . . . . . . . . . . . .272

12.3.2 Reward the player for their tenacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

12.3.3 Reward the player for exploring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274

12.3.4 Reward the player for not immediately following the given direction . . . . . . . . . . . .274

12.3.5 Reward the player for not trusting you entirely . . . . . . . . . . . . . . . . . . . . . . .274

12.3.6 Reward Backtracking (but don’t make it mandatory!) . . . . . . . . . . . . . . . . . . . .275

12.3.7 The “lives” system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275

12.3.7.1 1-UPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276

12.3.7.2 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276

12.4 Loading Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

12.4.1 What to put in a loading screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

12.4.2 Letting the player “exit” the loading screen . . . . . . . . . . . . . . . . . . . . . . . . .277

12.4.3 Avoiding a loading screen altogether . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278

12.5 Designing the story and gameplay flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278

12.5.1 Linear Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278

12.5.2 Branching gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

12.5.3 Parallel gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280

12.5.4 Threaded gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280

12.5.5 Episodic gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

12.5.6 Adding parallel paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

12.5.7 Looping Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282

12.5.7.1 Soft-reset mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282

12.6 Some game genres and their characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

12.6.1 Roguelikes and Rogue-lites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

12.6.1.1 Use of pseudo-randomness and procedural generation . . . . . . . . . . . . . . .283

12.6.1.2 Permadeath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

12.6.1.3 Turn-based Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

12.6.1.4 Lack of mode-based gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

12.6.1.5 Multiple ways to accomplish (or fail!) a task . . . . . . . . . . . . . . . . . . . . .284

12.6.1.6 Resource Management is key . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

12.6.1.7 Peace was never an option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

CONTENTS XIII



2D Game Development: From Zero To Hero

12.6.1.8 Dealing with the unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

12.7 Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285

12.7.1 General Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285

12.7.1.1 Make that last Health Point count . . . . . . . . . . . . . . . . . . . . . . . . . .285

12.7.1.2 Avoiding a decision can be a decision itself . . . . . . . . . . . . . . . . . . . . .285

12.7.1.3 Telegraphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286

12.7.1.4 Minigames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286

12.7.1.5 When unlockables are involved, be balanced . . . . . . . . . . . . . . . . . . . .287

12.7.2 Shooters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

12.7.2.1 Make the bullets stand out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

12.7.3 RPGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288

12.7.3.1 Grinding and farming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288

12.7.3.2 Leveling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

12.7.3.3 “Mastering” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

12.8 Perceived Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291

12.8.1 You don’t need precise collision detection . . . . . . . . . . . . . . . . . . . . . . . . . .291

12.8.2 Immediate dangers should be well visible . . . . . . . . . . . . . . . . . . . . . . . . . .292

12.9 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293

12.9.1 You cannot use the “Red Cross” in games . . . . . . . . . . . . . . . . . . . . . . . . . .294

12.9.2 Auto-saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

12.9.3 Feedback is important . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

13 Creating your assets 297

13.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

13.2 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

13.2.1 Some computer graphics basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

13.2.1.1 The “color wheel” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

13.2.1.2 Color representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298

13.2.1.3 Primary, Secondary and Tertiary colors . . . . . . . . . . . . . . . . . . . . . . .300

13.2.1.4 Analogous Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300

13.2.1.5 Complementary Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300

13.2.1.6 Color Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

13.2.1.7 Direct Color vs. Indexed Color . . . . . . . . . . . . . . . . . . . . . . . . . . . .304

13.2.1.8 Lossless Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304

13.2.1.9 Lossy Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304

13.2.1.10 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

13.2.1.11 Texture Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

13.2.2 General Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306

13.2.2.1 Practice, Practice, Practice… . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306

13.2.2.2 References are your friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306

CONTENTS XIV



2D Game Development: From Zero To Hero

13.2.2.3 Don’t compare your style to others’ . . . . . . . . . . . . . . . . . . . . . . . . .306

13.2.2.4 Study other styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306

13.2.2.5 Learn to deconstruct objects into shapes . . . . . . . . . . . . . . . . . . . . . .307

13.2.3 Sprite sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307

13.2.3.1 Sprite Sheet Gotchas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308

13.2.4 Virtual Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309

13.2.5 Using limited color palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310

13.2.5.1 Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310

13.2.5.2 Palette Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312

13.2.6 Layering and graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312

13.2.6.1 Detail attracts attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312

13.2.6.2 Use saturation to separate layers further . . . . . . . . . . . . . . . . . . . . . .313

13.2.6.3 Movement is yet another distraction . . . . . . . . . . . . . . . . . . . . . . . . .313

13.2.6.4 Use contrast to your advantage . . . . . . . . . . . . . . . . . . . . . . . . . . .313

13.2.6.5 Find exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314

13.2.6.6 Summarizing Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314

13.2.7 Pixel Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316

13.2.7.1 What pixel art is and what it is not . . . . . . . . . . . . . . . . . . . . . . . . . .316

13.2.7.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316

13.2.7.3 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

13.2.7.4 Sub-pixel animation with palette cycling . . . . . . . . . . . . . . . . . . . . . . .317

13.2.8 Normal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

13.2.8.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318

13.2.9 Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

13.2.9.1 Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

13.2.9.2 Sprites and icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

13.3 Sounds And Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

13.3.1 Some audio basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

13.3.1.1 Sample Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

13.3.1.2 Bit Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

13.3.1.3 Lossless Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325

13.3.1.4 Lossy Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325

13.3.1.5 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325

13.3.2 Sound Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326

13.3.2.1 AM Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326

13.3.2.2 FM Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327

13.3.2.3 FM Synthesis vs Sample-based music . . . . . . . . . . . . . . . . . . . . . . . .327

13.3.3 Basic Wave Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328

13.3.3.1 Sine Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328

13.3.3.2 Square Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

CONTENTS XV



2D Game Development: From Zero To Hero

13.3.3.3 Triangle Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

13.3.3.4 Sawtooth Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

13.3.3.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

13.3.4 ADSR Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

13.3.4.1 Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

13.3.4.2 Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

13.3.4.3 Sustain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

13.3.4.4 Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332

13.3.5 Digital Sound Processing (DSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332

13.3.5.1 Reverb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333

13.3.5.2 Pitch Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333

13.3.5.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333

13.3.5.4 Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333

13.3.6 Simulating older consoles’ audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334

13.3.6.1 Commodore Vic20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334

13.3.6.2 Commodore 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334

13.3.6.3 Commodore Amiga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335

13.3.6.4 Sega Master System / GameGear . . . . . . . . . . . . . . . . . . . . . . . . . .336

13.3.6.5 Sega Genesis/MegaDrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336

13.3.6.6 NES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336

13.3.6.7 SNES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

13.3.6.8 Game Boy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

13.3.6.9 AdLib / SoundBlaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

13.3.7 “Swappable” sound effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

13.3.8 Some audio processing tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

13.3.8.1 Prefer cutting over boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

13.3.9 DAW Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

13.3.9.1 What is a DAW Software? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

13.3.9.2 The Piano Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

13.3.10 Music Tracker Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340

13.3.10.1 What is a Music Tracker Software? . . . . . . . . . . . . . . . . . . . . . . . . . .340

13.3.10.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

13.3.10.3 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

13.3.10.4 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342

13.3.10.5 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342

13.3.11 Basic Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342

13.3.11.1 Four on the floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342

13.3.11.2 Four on the floor with off-beat hi-hats . . . . . . . . . . . . . . . . . . . . . . . .343

13.3.11.3 A simple rock beat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

13.3.12 Adaptive Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

CONTENTS XVI



2D Game Development: From Zero To Hero

13.4 Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

13.4.1 Font Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

13.4.1.1 Serif and Sans-Serif fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

13.4.1.2 Proportional and Monospaced fonts . . . . . . . . . . . . . . . . . . . . . . . . .344

13.4.2 Using textures to make text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345

13.4.3 Using Fonts to make text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

13.5 Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

13.5.1 What are shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

13.5.2 Shader Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

13.5.3 The GLSL Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348

13.5.3.1 The data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348

13.5.4 Some GLSL Shaders examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349

14 Design Patterns 351

14.1 Creational Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

14.1.1 Singleton Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

14.1.2 Dependency Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353

14.1.3 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

14.2 Structural Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

14.2.1 Flyweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356

14.2.2 Component/Composite Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357

14.2.3 Decorator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359

14.2.4 Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360

14.2.4.1 Object Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360

14.2.4.2 Class Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

14.2.5 Facade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

14.2.6 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363

14.3 Behavioural Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365

14.3.1 Command Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365

14.3.2 Observer Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

14.3.3 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368

14.3.4 Chain of Responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369

14.3.5 Visitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370

14.4 Architectural Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370

14.4.1 Service Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371

15 Useful Containers and Classes 372

15.1 Resource Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372

15.2 Animator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372

15.3 Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373

15.4 Menu Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375

CONTENTS XVII



2D Game Development: From Zero To Hero

15.5 Particle Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

15.5.1 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

15.5.2 Emitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379

15.5.3 Force Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381

15.6 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382

15.6.1 Accounting for “leftover time” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383

15.6.1.1 A naive solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384

15.6.1.2 A different approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385

15.7 Inbetweening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386

15.7.1 Bouncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389

15.8 Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389

16 Artificial Intelligence in Videogames 390

16.1 Path Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .390

16.1.1 Representing our world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .390

16.1.1.1 2D Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .390

16.1.1.2 Path nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391

16.1.1.3 Navigation meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391

16.1.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394

16.1.2.1 Manhattan Distance heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . .394

16.1.2.2 Euclidean Distance heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395

16.1.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .396

16.1.3.1 A simple “Wandering” Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .396

16.1.3.2 A slightly better “Wandering” algorithm . . . . . . . . . . . . . . . . . . . . . . .399

16.1.3.3 The Greedy “Best First” Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .401

16.1.3.4 The Dijkstra Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403

16.1.3.5 The A* Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404

16.2 Finite state machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

16.3 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

16.4 Behaviour Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407

16.5 Tips and tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407

16.5.1 “Jump when the player shoots” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407

16.5.2 Distance-based patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409

16.5.2.1 “Ranged pattern” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409

16.5.2.2 “Melee pattern” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410

17 Other Useful Algorithms 412

17.1 World Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412

17.1.1 Midpoint Displacement Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412

17.1.2 Diamond-Square Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414

17.1.3 Maze Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417

CONTENTS XVIII



2D Game Development: From Zero To Hero

17.1.3.1 Randomized Depth-First Search (Recursive Backtracker) . . . . . . . . . . . . . .418

17.1.3.2 Randomized Kruskal’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .423

17.1.3.3 Recursive Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426

17.1.3.4 Binary Tree Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428

17.1.3.5 Eller’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431

17.2 Dungeon Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .432

17.3 Noise Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .432

17.3.1 Randomized Noise (Static) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .432

17.3.2 Perlin Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433

17.4 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .434

17.4.1 Skeleton animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .434

18 Procedural Content Generation 435

18.1 What is procedural generation (and what it isn’t) . . . . . . . . . . . . . . . . . . . . . . . . . . .435

18.2 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436

18.2.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436

18.2.1.1 Less disk space needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436

18.2.1.2 Larger games can be created with less effort . . . . . . . . . . . . . . . . . . . .436

18.2.1.3 Lower budgets needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .437

18.2.1.4 More variety and replayability . . . . . . . . . . . . . . . . . . . . . . . . . . . .437

18.2.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .437

18.2.2.1 Requires more powerful hardware . . . . . . . . . . . . . . . . . . . . . . . . . .437

18.2.2.2 Less Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .437

18.2.2.3 Worlds can feel repetitive or “lacking artistic direction” . . . . . . . . . . . . . . .437

18.2.2.4 You may generate something unusable . . . . . . . . . . . . . . . . . . . . . . .438

18.2.2.5 Story and set game events are harder to script . . . . . . . . . . . . . . . . . . .438

18.3 Where it can be used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .438

18.4 Procedural Generation and Difficulty Management . . . . . . . . . . . . . . . . . . . . . . . . . .439

18.4.1 Static difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439

18.4.2 Adaptive Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439

18.4.2.1 Rubberbanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439

18.4.3 Static vs. Adaptive Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440

19 Developing Game Mechanics 441

19.1 General Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441

19.1.1 I-Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441

19.1.2 Tilemaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .442

19.1.2.1 Rectangular Tilemaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .442

19.1.2.2 Hexagonal Tilemaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443

19.1.2.3 Isometric Tilemaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445

19.1.3 Scrolling Backgrounds and Parallax Scrolling . . . . . . . . . . . . . . . . . . . . . . . . .446

CONTENTS XIX



2D Game Development: From Zero To Hero

19.1.3.1 Infinitely Scrolling Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . .446

19.1.3.2 Parallax Scrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .447

19.1.4 Avoid interactions between different input systems . . . . . . . . . . . . . . . . . . . . .450

19.1.5 Sprite Stenciling/Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .450

19.1.6 Loading screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .450

19.1.7 Simulating Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451

19.1.8 Corner correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .456

19.2 2D Platformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457

19.2.1 Simulating Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457

19.2.2 Avoiding “Floaty Jumps” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .458

19.2.3 Making jumps “float differently” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459

19.2.4 Ladders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460

19.2.5 Walking on slanted ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461

19.2.6 Stairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461

19.2.7 Ledge Grabbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461

19.2.8 Jump Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461

19.2.9 Coyote Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462

19.2.10 Timed Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463

19.2.11 Wall Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464

19.2.12 Screen Wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464

19.3 Top-view RPG-Like Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464

19.3.1 Managing height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464

19.3.1.1 Faking it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464

19.3.1.2 Managing height for real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466

19.4 Rhythm Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466

19.4.1 The world of lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466

19.4.1.1 Input Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466

19.4.1.2 Video Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466

19.4.1.3 Audio Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467

19.4.1.4 Lag Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467

19.4.2 Synchronizing with the Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468

19.4.2.1 Time domain vs. Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . .468

19.4.2.2 The Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469

19.4.2.3 Beat Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469

19.5 “Bullet Hell” Style Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469

19.5.1 Bullets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469

19.5.2 The Ship Hitbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470

19.5.3 Screen-clearing bombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471

19.5.4 Clearing bullets on pattern changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471

19.5.5 Find other chances to clear some bullets . . . . . . . . . . . . . . . . . . . . . . . . . . .471

CONTENTS XX



2D Game Development: From Zero To Hero

19.5.6 Turn enemy bullets into collectibles at the end of a boss fight . . . . . . . . . . . . . . . .471

19.5.7 The “Chain Meter” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471

19.5.8 Managing the player’s death . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472

19.5.9 The Enemy AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472

19.5.10 Be fair to the player, but also to the computer . . . . . . . . . . . . . . . . . . . . . . . .473

19.5.11 Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473

19.5.12 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473

19.6 Match-x Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474

19.6.1 Managing and drawing the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474

19.6.2 Finding and removing Matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474

19.6.2.1 Why don’t we delete the matches immediately? . . . . . . . . . . . . . . . . . . .476

19.6.3 Replacing the removed tiles and applying gravity . . . . . . . . . . . . . . . . . . . . . .477

19.7 Cutscenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .479

19.7.1 Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .479

19.7.2 Scripted Cutscenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .479

20 Balancing Your Game 481

20.1 Do not annoy the player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481

20.2 Favour the player when possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481

20.3 Difficulty curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482

20.3.1 Simple Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482

20.3.2 Flat Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482

20.3.2.1 Linear Increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .483

20.3.2.2 Logarithmic Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .483

20.3.2.3 Exponential Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484

20.3.3 Wave patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485

20.3.3.1 Linearly Increasing wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485

20.3.3.2 Logarithmically Increasing wave . . . . . . . . . . . . . . . . . . . . . . . . . . .485

20.3.4 Interval Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .486

20.3.4.1 Simple Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .486

20.3.4.2 Widening Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487

20.3.4.3 Widening Interval with Logarithmic trend . . . . . . . . . . . . . . . . . . . . . .488

20.3.5 This is not everything . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .488

20.3.5.1 Sawtooth pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .488

20.3.5.2 What not to do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .489

20.3.5.3 Beyond difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490

20.4 Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490

20.4.1 Supply and Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490

20.4.2 Money sources and sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .491

20.4.3 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .492

CONTENTS XXI



2D Game Development: From Zero To Hero

20.4.4 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .492

20.5 A primer on Cheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .492

20.5.1 Information-based cheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .493

20.5.2 Mechanics-based cheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .493

20.5.3 Man-in-the-middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .493

20.5.4 Low-level exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .493

20.6 How cheating influences gameplay and enjoyability . . . . . . . . . . . . . . . . . . . . . . . . .494

20.6.1 Single Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494

20.6.2 Multiplayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494

20.6.2.1 P2P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494

20.6.2.2 Dedicated Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496

20.7 Cheating protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .497

20.7.1 Debug Mode vs Release Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .498

20.8 Some common exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .498

20.8.1 Integer Under/Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .498

20.8.1.1 How the attack works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499

20.8.2 Repeat attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499

21 Accessibility in video games 501

21.1 What accessibility is and what it is not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .501

21.2 UI and HUD Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .501

21.3 Subtitles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .501

21.4 Mappable Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .501

21.5 Button Toggling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502

21.6 Dyslexia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502

21.6.1 Text Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502

21.6.2 Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502

21.7 “Slow Mode” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502

21.8 Colorblind mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502

21.9 No Flashing Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .503

21.10 No motion blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .503

21.11 Reduced Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .503

21.12 Assisted Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .503

21.13 Controller Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .503

21.14 Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .504

22 Testing your game 505

22.1 When to test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505

22.1.1 Testing “as an afterthought” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505

22.1.2 Test-Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505

22.1.3 The “Design to test” approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505

CONTENTS XXII



2D Game Development: From Zero To Hero

22.1.4 You won’t be able to test EVERYTHING . . . . . . . . . . . . . . . . . . . . . . . . . . . .505

22.2 Mocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .506

22.3 Types of testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .506

22.3.1 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .506

22.3.2 Manual Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .507

22.4 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .507

22.5 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .508

22.6 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .508

22.7 Playtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .508

22.7.1 In-House Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .508

22.7.2 Closed Beta Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509

22.7.3 Open Beta Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509

22.7.4 A/B Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509

23 Profiling and Optimization 510

23.1 Profiling your game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .510

23.1.1 Does your application really need profiling? . . . . . . . . . . . . . . . . . . . . . . . . .510

23.1.1.1 Does your FPS counter roam around a certain “special” value? . . . . . . . . . . .510

23.1.1.2 Is the animation of your game stuttering but the FPS counter is fine? . . . . . . . .510

23.1.2 First investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .510

23.1.2.1 Is your game using 100% of the CPU? . . . . . . . . . . . . . . . . . . . . . . . .510

23.1.2.2 Is your game overloading your GPU? . . . . . . . . . . . . . . . . . . . . . . . .511

23.1.2.3 Is your game eating up more and more RAM as it’s running? . . . . . . . . . . . .511

23.2 Optimizing your game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .512

23.2.1 Working with references vs. returning values . . . . . . . . . . . . . . . . . . . . . . . .512

23.2.2 Optimizing Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .513

23.2.2.1 Off-screen objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .513

23.2.3 Reduce the calls to the Engine Routines . . . . . . . . . . . . . . . . . . . . . . . . . . .513

23.2.4 Entity Cleanup and Memory leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .514

23.2.5 Using analyzers to detect Memory Leaks . . . . . . . . . . . . . . . . . . . . . . . . . .515

23.2.5.1 Static Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515

23.2.5.2 Dynamic testing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515

23.2.6 Resource Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515

23.2.7 Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517

23.2.8 Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517

23.2.9 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .520

23.2.10 Eager vs. Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .520

23.2.10.1 Eager approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .521

23.2.10.2 Lazy approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .521

23.2.11 Detach your updating from drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522

CONTENTS XXIII



2D Game Development: From Zero To Hero

23.2.12 Be mindful of how you query your data structures . . . . . . . . . . . . . . . . . . . . . .522

23.3 Tips and tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523

23.3.1 Be mindful of your “updates” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523

23.3.2 Use the right data structures for the job . . . . . . . . . . . . . . . . . . . . . . . . . . .523

23.3.3 Dirty Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .524

23.3.4 Far-Away entities (Dirty Rectangles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .525

23.3.5 Tweening is better than animating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .525

23.3.6 Remove dead code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .525

23.4 Non-Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .526

23.4.1 “Switches are faster than IFs” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .526

23.4.2 Blindly Applying Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528

24 Marketing your game 530

24.1 An Important Note: Keep your feet on the ground . . . . . . . . . . . . . . . . . . . . . . . . . .530

24.2 The importance of being consumer-friendly . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530

24.3 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .531

24.3.1 Penetrating the market with a low price . . . . . . . . . . . . . . . . . . . . . . . . . . .531

24.3.2 Giving off a “premium” vibe with a higher price . . . . . . . . . . . . . . . . . . . . . . .531

24.3.3 The magic of “9” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532

24.3.4 Launch Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532

24.3.5 Bundling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532

24.3.6 Nothing beats the price of “Free” (Kinda) . . . . . . . . . . . . . . . . . . . . . . . . . .533

24.4 Managing Hype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533

24.5 Downloadable Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533

24.5.1 DLC: what to avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .534

24.5.2 DLC: what to do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .534

24.6 Digital Rights Management (DRM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .534

24.6.1 How DRM can break a game down the line . . . . . . . . . . . . . . . . . . . . . . . . . .536

24.7 Free-to-Play Economies and LootBoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .536

24.7.1 Microtransactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .536

24.7.1.1 The human and social consequences of Lootboxes . . . . . . . . . . . . . . . . .536

24.7.2 Free-to-Play gaming and Mobile Games . . . . . . . . . . . . . . . . . . . . . . . . . . .537

24.8 Assets and asset Flips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538

24.9 Crowdfunding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538

24.9.1 Communication Is Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539

24.9.2 Do not betray your backers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539

24.9.3 Don’t be greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539

24.9.4 Stay on the “safe side” of planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .540

24.9.5 Keep your promises, or exceed them . . . . . . . . . . . . . . . . . . . . . . . . . . . . .540

24.9.6 A striking case: Mighty No. 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .540

CONTENTS XXIV



2D Game Development: From Zero To Hero

24.10 Engagement vs Fun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .541

24.11 Streamers and Content Creators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542

24.11.1 The game developers’ side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542

24.11.2 The Streamers’ side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542

24.11.3 Other entities and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .543

25 Keeping your players engaged 544

25.1 Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544

25.1.1 Forums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544

25.1.2 Wikis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544

25.1.3 Update Previews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544

25.1.4 Speedrunning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .545

25.1.5 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .546

25.2 Replayability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .546

25.2.1 Modding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .546

25.2.2 Fan games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .547

25.2.3 Mutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .547

25.2.4 Randomizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548

25.2.5 New Game+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548

25.2.6 Transmogrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548

26 Dissecting games: three study cases 551

26.1 A bad game: Hoshi wo miru hito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .551

26.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .551

26.1.2 Balance Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .551

26.1.2.1 You can’t beat starter enemies . . . . . . . . . . . . . . . . . . . . . . . . . . . .551

26.1.2.2 The Damage Sponge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .551

26.1.2.3 You can’t run away from battles, but enemies can . . . . . . . . . . . . . . . . . .552

26.1.2.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .552

26.1.3 Bad design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .552

26.1.3.1 You get dropped in the middle of nowhere . . . . . . . . . . . . . . . . . . . . . .552

26.1.3.2 The starting town is invisible . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553

26.1.3.3 The Jump Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553

26.1.3.4 Items are invisible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553

26.1.3.5 Item management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553

26.1.3.6 Buying Weapons makes you weaker . . . . . . . . . . . . . . . . . . . . . . . . .553

26.1.3.7 Enemy Abilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554

26.1.3.8 You can soft lock yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554

26.1.4 Confusing Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554

26.1.4.1 Starting level for characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554

26.1.4.2 Slow overworld movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554

CONTENTS XXV



2D Game Development: From Zero To Hero

26.1.4.3 Exiting a dungeon or a town . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554

26.1.4.4 The Health Points UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .555

26.1.5 Inconveniencing the player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .555

26.1.5.1 The battle menu order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .555

26.1.5.2 Every menu is a committal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .555

26.1.5.3 Password saves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .555

26.1.5.4 Each character has their own money stash . . . . . . . . . . . . . . . . . . . . .556

26.1.6 Bugs and glitches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .556

26.1.6.1 Moonwalking and save warping . . . . . . . . . . . . . . . . . . . . . . . . . . .556

26.1.6.2 The final maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .556

26.1.6.3 The endings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .557

26.1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .557

26.2 The first good game - VVVVVV: Slim story and essential gameplay . . . . . . . . . . . . . . . . .557

26.2.1 A Slim story that holds up great . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .557

26.2.2 Essential gameplay: easy to learn, hard to master . . . . . . . . . . . . . . . . . . . . . .558

26.2.3 Diversified challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .558

26.2.4 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .558

26.2.5 Amazing soundtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559

26.2.6 Accessibility Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559

26.2.7 Post-endgame Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559

26.2.8 User-generated content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559

26.2.9 “Speedrunnability” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560

26.2.10 Characters are memorable, even if you don’t see them a lot . . . . . . . . . . . . . . . .560

26.2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560

26.3 Another good game - Undertale: A masterclass in storytelling . . . . . . . . . . . . . . . . . . . .560

26.3.1 The power of choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560

26.3.2 The game doesn’t take itself very seriously (sometimes) . . . . . . . . . . . . . . . . . .560

26.3.3 All the major characters are very memorable . . . . . . . . . . . . . . . . . . . . . . . .561

26.3.4 The game continuously surprises the player . . . . . . . . . . . . . . . . . . . . . . . . .561

26.3.5 Player choices influence the game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561

26.3.6 Great (and extensive!!) soundtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562

26.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562

27 Project Ideas 563

27.1 Tic-Tac-Toe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563

27.1.1 Basic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563

27.1.2 Advanced Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564

27.1.3 Master Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564

27.2 Space Invaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564

27.2.1 Basic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565

CONTENTS XXVI



2D Game Development: From Zero To Hero

27.2.2 Advanced Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .566

27.2.3 Master level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .566

27.3 Breakout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .567

27.3.1 Basic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .567

27.3.2 Advanced Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .567

27.3.3 Master Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568

27.4 Shooter Arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569

27.4.1 Basic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569

27.4.2 Advanced level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .570

27.4.3 Master Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .570

28 Game Jams 572

28.1 Have Fun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572

28.2 Stay Healthy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572

28.3 Stick to what you know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572

28.4 Hacking is better than planning (But still plan ahead!) . . . . . . . . . . . . . . . . . . . . . . . .572

28.5 Graphics? Sounds? Music? FOCUS! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .573

28.6 Find creativity in limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .573

28.7 Involve Your Friends! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574

28.8 Write a Post-Mortem (and read some too!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574

28.9 Most common pitfalls in Game Jams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574

29 Where To Go From Here 576

29.1 Collections of different topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576

29.1.1 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576

29.1.2 Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576

29.1.3 Multiple formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576

29.2 Pixel Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.2.1 Multiple Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.3 Sound Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.3.1 Multiple Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.4 Game Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.4.1 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.5 Game Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.5.1 Web Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.5.2 Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

29.6 References and Cheat Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

A Glossary 579

B Engines, Libraries And Frameworks 583

CONTENTS XXVII



2D Game Development: From Zero To Hero

C Some other useful tools 593

D Free assets and resources 598

E Contributors 601

CONTENTS XXVIII



2D Game Development: From Zero To Hero

1 Foreword

Every time we start a new learning experience, we may be showered by a immeasurable amount of doubts and

fears. The task, however small, may seem daunting. And considering how large the field of Game Development can

be, these fears are easily understandable.

This book is meant to be a reference for game developers, oriented at 2D, as well as being a collection of “best

practices” that you should follow when developing a game by yourself (or with some friends).

But you shouldn’t let these “best practices” jail you into a way of thinking that is not yours, actually my first tip in

this book is do not follow this book. Yet.

Do it wrong.

Learn why these best practices exist by experience, make code so convoluted that you cannot maintain it anymore,

don’t check for overflows in your numbers, allow yourself to do it wrong.

Your toolbox is there to aid you, your tools don’t have feelings that can be hurt (although they will grumble at you

many times) in the same way that you cannot hurt a hammer when missing the nail head. You cannot break a

computer by getting things wrong (at least 99.9999% of the time). Breaking the rules will just help you understand

them better.

Write your own code, keep it as simple as you can, and practice.

Don’t let people around you tell you that “you shouldn’t do it that way”, if you allow that to happen you’re depriving

yourself of a great opportunity to learn. Don’t let others’ “lion tamer syndrome” get to you, avoid complex structures

as much as possible; cutting and pasting code will get you nowhere.

But most of all, never give up and try to keep it fun.

There will be times where you feel like giving up, because something doesn’t work exactly as you want it to, or

because you feel you’re not ready to put out some code. When you don’t feel ready, just try making something

simple, something that will teach you how to manipulate data structures and that gives you a result in just a couple

days of work. Just having a rectangle moving on the screen, reacting to your key presses can be that small confidence

boost that can get you farther and farther into this world.

And when all else fails, take a pen, some paper and your favorite Rubber Duck (make sure it is impact-proof) and

think.

Coding is hard, but at the same time, it can give you lots of satisfaction.

I really hope that this book will give you tips, tricks and structures that one day will make you say “Oh yeah, I can

use that!”. So that one day you are able to craft an experience that someone else will enjoy, while you enjoy the

journey that brings to such experience.

1 FOREWORD 1

https://en.wikipedia.org/wiki/Rubber_duck_debugging


2D Game Development: From Zero To Hero

2 Introduction

A journey of a thousand miles begins with a single step

Laozi - Tao Te Ching

Welcome to the book! This book aims to be an organized collection of the community’s knowledge on game devel-

opment techniques, algorithms and experience with the objective of being as comprehensive as possible.

2.1 Why another game development book?

It’s really common in today’s game development scene to approach game development through tools that abstract

and guide our efforts, without exposing us to the nitty-gritty details of how things work on low-level and speeding

up and easing our development process. This approach is great when things work well, but it can be seriously

detrimental when we are facing against issues: we are tied to what the library/framework creators decided was the

best (read “applicable in the widest range of problems”) approach to solving a problem.

Games normally run at 30fps, more modern games run at 60fps, some even more, leaving us with between 33ms

to 16ms or less to process a frame, which includes:

• Process the user input;

• Update the player movement according to the input;

• Update the state of any AI that is used in the level;

• Move the NPCs according to their AI;

• Identify Collisions between all game objects;

• React to said Collisions;

• Update the Camera (if present);

• Update the HUD (if present);

• Draw the scene to the screen.

These are only some basic things that can be subject to change in a game, every single frame.

When things don’t go well, the game lags, slows down or even locks up. In that case we will be forced to take the

matter in our hands and get dirty handling things exactly as we want them (instead of trying to solve a generic

problem).

When you are coding a game for any device that doesn’t really have “infinite memory”, like a mobile phone, consoles

or older computers, this “technical low-level know-how” becomes all the more important.

This book wants to open the box that contains everything related to 2D game development, plus some small tips

and tricks to make your game more enjoyable. This way, if your game encounters some issues, you won’t fear diving

into low-level details and fix it yourself.

Or why not, make everything from scratch using some pure-multimedia interfaces (like SDL or SFML) instead of fully

fledged game engines (like Unity).

2 INTRODUCTION 2



2D Game Development: From Zero To Hero

This book aims to be a free (as in price) teaching and reference resource for anyone who wants to learn 2D game

development, including the nitty-gritty details.

Enjoy!

2.2 Conventions used in this book

2.2.1 Logic Conventions

When talking about logic theory, the variables will be represented with a single uppercase letter, written in math

mode: A

The following symbol will be used to represent a logical “AND”: ∧

The following symbol will be used to represent a logical “OR”: ∨

The logical negation of a variable will be represented with a straight line on top of the variable, so the negation of

the variable A will be Ā

2.2.2 Code Listings

Listings, algorithms and anything that is code will be shown in monotype fonts, using syntax highlighting where

possible, inside of a dedicated frame:

Listing 1: Example code listing

1 function Example(string phrase){

2 print(phrase);

3 }

4

5 class ExampleClass{

6 // This is a simple example class

7 constructor (){

8 // This is an example constructor

9 }

10 }

2.2.3 Block Quotes

There will be times when it’s needed to write down something from another source verbatim, for that we will use

block quotes, which are styled as follows:

Hi, I’m a block quote! You will see me when something is… quoted!

I am another row of the block quote! Have a nice day!

2.2.4 Boxes

In your journey through this book, you may find some boxes, let’s see which ones you may come across.

2 INTRODUCTION 3



2D Game Development: From Zero To Hero

Tip!

This is a tip box, here you will find tips that are loosely related to the chapter at hand.

These small tips will help you make a better game, or wiggle your way through some-

thing difficult.

Pitfall Warning!

This is a pitfall box, it will warn you of traps behind the corner, as well as possible

shortcomings of a certain solution.

Random Trivia!

This is a trivia box, it will give out some small facts that can help you understand things

better, or just give you a small break from all the learning.

Note!

This is just a note box, it’s not a pitfall, a tip or a trivia. This is used for reminders and

just as a general purpose note

Advanced Wizardry!

This will warn you of complex sections, or sections treating advanced topics that have

limited game development usefulness. Such sections may be skimmed over.

2.2.5 Engine Used

Most editions of this book does not use any engine. All algorithms will be presented pretending there is some

“generic engine” behind the scenes that handles sprites, vectors and the like. The objective of this book is teaching

algorithms, tips and tricks and game design in the most engine-agnostic (and language-agnostic, if you’re looking

at the “pseudocode edition”) way possible.

If instead you’re reading a version that features “language extensions”, all algorithms will be in your favourite

language, using your favourite engine.

2.2.6 About editions

This book comes in various editions, and they come with some caveats.

2 INTRODUCTION 4



2D Game Development: From Zero To Hero

• Pseudocode Edition: This is the standard edition, using a C-like syntax that tries to be as readable as

possible and abstracts itself from any kind of engine.

• Python Edition: Python is considered one of the easiest language to start coding on. Many tend to complain

about its performance, but its similarity to Godot Engine’s GDScript and its flexibility make it a good candidate

for starters.

• C++ Edition: C++ is probably the most used language in game development (along with C#) but it can be

really difficult to manage. It has no garbage collection, forcing you to manage the memory manually, and

pointers can prove to be a difficult concept for many.

• JavaScript Edition: Javascript is the de-facto “internet language” and its influence is spreading to desktop

applications and video games too. Many games now can be played on the browser thanks to it and the HTML5

canvas elements. This is a language that can be very forgiving and frustrating at the same time.

• Lua Edition: Lua is one of themost spread scripting languages in the world of video games. Since it has a very

small interpreter, it can be added to a lot of code bases without weighing them down much. It is not a proper

object-oriented language, but it has very strong metaprogramming capabilities (where you can “program the

programming language”). There are also some libraries that allow for classes and object-oriented concepts

to fit in Lua.

2.3 Structure of this Book

This book is structured in many chapters, here you will find a small description of each and every one of them.

• Foreword: You didn’t skip it, right?

• Introduction: Here we present the structure of the book and the reasons why it came to exist. You are

reading it now, hold tight, you’re almost there!

• The Maths Behind Game Development: Here we will learn the basic maths that are behind any game, like

vectors, matrices and screen coordinates.

• Some Computer Science Fundamentals: Here we will learn (or revise) some known computer science

fundamentals (and some less-known too!) and rules that will help us managing the development of our game.

• A game design dictionary: Here we will introduce some basic concepts that will help us in understanding

game design: platforms, input devices and genres.

• Project Management Basics and Tips: Project management is hard! Here we will take a look at some

common pitfalls and tips that will help us deliver our own project and deliver it in time.

• Writing a Game Design Document: In this section we will take a look at one of the first documents that

comes to exist when we want to make a game, and how to write one,

• The Game Loop: Here we will learn the basics of the “game loop”, the very base of any video game.

• Collision Detection and Reaction: In this section we will talk about one of the most complex and compu-

tationally expensive operations in a video game: collision detection.

• Scene Trees: Here we will briefly talk about probably the most important structure in games and game

engines: the scene tree.

• Cameras: In this section we will talk about the different types of cameras you can implement in a 2D game,

with in-depth analysis and explanation.

2 INTRODUCTION 5



2D Game Development: From Zero To Hero

• Game Design Tips: In this chapter we will talk about level design and how to walk your player through the

learning and reinforcement of game mechanics, dipping our toes into the huge topic that is game design.

• Creating your own assets: Small or solo game developers may need to create their own assets, in this

section we will take a look at how to create our own graphics, sounds and music.

• Design Patterns: A head-first dive into the software engineering side of game development, in this section

we will check many software design patterns used in many games.

• Useful Containers and Classes: A series of useful classes and containers used to make your game more

maintainable and better performing.

• Artificial Intelligence in Video games: In this section we will talk about algorithms that will help you coding

your enemy AI, as well as anything that must have a “semblance of intelligence” in your video game.

• Other Useful Algorithms: In this section we will see some algorithms that are commonly used in game,

including path finding, world generation and more.

• Procedural Content Generation: In this chapters wewill see the difference between procedural and random

content generation and how procedural generation can apply to more things than we think.

• Developing Game Mechanics: Here we will dive into the game development’s darkest and dirtiest secrets,

how games fool us into strong emotions but also how some of the most used mechanics are implemented.

• Balancing Your Game: A very idealistic vision on game balance, in this chapter we will take a look inside

the player’s mind and look at how something that may seem “a nice challenge” to us can translate into a

“terrible balance issue” to our players.

• Accessibility in video games: Here we will learn the concept of “accessibility” and see what options we

can give to our players to make our game more accessible (as well as more enjoyable to use).

• Testing your game: This section is all about hunting bugs, without a can of bug spray. A deep dive into the

world of testing, both automated and manual.

• Profiling and Optimization: When things don’t go right, like the game is stuttering or too slow, we have to

rely on profiling and optimization. In this section we will learn tips and tricks and procedures to see how to

make our games perform better.

• Marketing Your Game: Here we will take a look at mistakes the industry has done when marketing and

maintaining their own products, from the point of view of a small indie developer. We will also check some of

the more controversial topics like loot boxes, micro transactions and season passes.

• Keeping your players engaged: a lot of a game’s power comes from its community, in this section we will

take a look at some suggestion you can implement in your game (and out-of-game too) to further engage your

loyal fans.

• Dissecting Games: A small section dedicated to dissecting the characteristics of one (very) bad game, and

two (very) good games, to give us more perspective on what makes a good game “good” and what instead

makes a bad one.

• Project Ideas: In this section we take a look at some projects you can try and make by yourself, each project

is divided into 3 levels and each level will list the skills you need to master in order to be able to take on such

level.

• Game Jams: A small section dedicated on Game Jams and how to participate to one without losing your mind

in the process, and still deliver a prototype.

2 INTRODUCTION 6



2D Game Development: From Zero To Hero

• Where to go from here: We’re at the home stretch, you learned a lot so far, here you will find pointers to

other resources that may be useful to learn even more.

• Glossary: Any world that has a g symbol will find a definition here.

• Engines and Frameworks: A collection of frameworks and engines you can choose from to begin your game

development.

• Tools: Some software and tool kits you can use to create your own resources, maps and overall make your

development process easier and more manageable.

• Premade Assets and resources: In this appendix we will find links to many websites and resource for

graphics, sounds, music or learning.

• Contributors: Last but not least, the names of the people who contributed in making this book.

Have a nice stay and let’s go!

2 INTRODUCTION 7



Part 1: The basics



2D Game Development: From Zero To Hero

3 The Maths Behind Game Development

Do not worry about your difficulties in Mathematics. I can assure you mine

are still greater.

Albert Einstein

This book assumes you already have some knowledge of maths, but we will also try to keep the bar of entry as low

as possible.

Also we will represent derivatives with the f ′(x) symbol, instead of the more verbose ∂f
∂x .

In this chapter we’ll take a quick look (or if you already know them, a refresher) on the basic maths needed to make

a 2D game.

3.1 Some useful symbols

While reading this book, we may need to delve into some mathematical lingo that not everyone may understand

immediately, so here’s a small glossary of some of mathematical the symbols we may use.

• x ∈ S Denotes a “set membership”, so the object to the left of the symbol is an element of the set at the

right: x is an element inside the set S;

• A ⊂ B Denotes a “subset relationship”: A is a subset of B;

• A ⊆ B Denotes a “subset relationship” where equality is possible: A is a subset of B, but also it may happen

that A equals B;

• A ∪B Denotes “set union”, the result is composed by all elements of A and B, combined;

• A ∩B Denotes “set intersection”, the result is composed by all elements of A that are also found in B;

• ∀ Means “for all”;
• ∃ Means “exists”;
• ∃! Means “exists only one”;
• P → Q Means “implies”, so you can read this as “P implies Q” or “if P is true then Q is true”;

• P ↔ Q Logical equivalence: means “if and only if” or “is equivalent”, so you can read this as “P is equivalent

to Q” or “P if and only if Q”;

3.2 The modulo operator

Very basic, but sometimes overlooked, function in mathematics is the “modulo” function (or “modulo operator”).

Modulo is a function that takes 2 arguments, let’s call them “a” and “b”, and returns the remainder of the division

represented by a/b.

So we have examples likemod(3, 2) = 1 ormod(4, 5) = 4 andmod(8, 4) = 0.

In most programming languages the modulo function is hidden behind the operator “%”, which means that the

functionmod(3, 2) is represented with 3%2.

The modulo operator is very useful when we need to loop an ever-growing value between two values (as will be

3 THE MATHS BEHIND GAME DEVELOPMENT 9



2D Game Development: From Zero To Hero

shown in infinitely scrolling backgrounds).

Pitfall Warning!

Be careful when using the modulo operator with negative arguments: it may lead to

unexpected results, which may depend on the programming language you are using.

3.3 Powers and Roots

We start our revision of maths by remembering powers and roots. A power is just a short way to multiply a number

by itself a certain amount of times.

For example: 23 = 2 · 2 · 2 = 8, 2 is multiplied by itself 3 times, giving 8 as a result.

Some other examples can be 44 = 4 · 4 · 4 · 4 = 256 and 09532 = 0 · 0 · ... · 0 = 0

One rule that we need to remember is that any number, when elevated to the zero-th power is always 1, so 2560 = 1

as well as 20 = 1.

Note!

Technically 00 might be considered “undefined”, but in most non-rigorous mathemati-

cal environments 00 = 1 is accepted.

Roots are the inverse operation of powers, which means that if 42 = 16 then 2
√
16 = 4

So we can say that

The nth root of a number x is a number r so that rn = x

Taking the examples of earlier, we have that 3
√
8 = 2, 4

√
256 = 4 and 9532

√
0 = 0. Omitting the index n on the root

is a short way to write the “square root”, which is the root with index 2. That means:

2
√
4 =

√
4 = 2

Pitfall Warning!

When talking “real numbers”, there is no
√
−1: that would fall into the “complex num-

bers” category, which are a matter outside the scope of this revision. That’s because

there is no real number that multiplied by itself an even amount of times that would

give a negative number. To make things more complex, roots with odd indices of nega-

tive numbers are part of the real numbers instead: 3
√
−8 = −2 because (−2)3 = −8

3 THE MATHS BEHIND GAME DEVELOPMENT 10



2D Game Development: From Zero To Hero

3.4 Equations

Equations are a way to express equality between two expressions, we’ve seen equations all our lives, just “hidden”.

Every operation is an equation.

In their more known form, equations can have one or more “unknowns”, usually represented with letters (the most

used are, in order x, y and z) and “solving an equation” means finding values for the unknowns that make the

equation true.

Here’s a simple equation:

2 · x = 10

Which can be read as “x is the number, that multiplied by 2, gives 10”, the solution of this equation is x = 5, because

2 · 5 = 10.

There are some basic rules, here’s a quick rundown.

3.4.1 You can add or subtract any number on both sides

This is one of the rules that will help us making things a bit easier. Let’s take the following example:

15 + 2x = 45

We can subtract 15 on both sides to make our life easier:

−15 + 15 + 2x = 45− 15

2x = 30

3.4.2 You can multiple or divide any non-zero number on both sides

This is another one of those rules that makes things a lot easier, taking the previous example:

2x = 30

We can divide each side by 2 (or multiply it by 1
2 ) to get to the final result:

1

2
· 2x = 30 · 1

2

2x

2
=

30

2

3 THE MATHS BEHIND GAME DEVELOPMENT 11



2D Game Development: From Zero To Hero

x = 15

3.5 Exponentiations and Logarithms

Similarly to powers involving simple numbers, we can involve letters in powers too, making them “exponentiations”.

2x = 32

In this case x is the number that makes the previous equation true (by the way, the result is x = 5).

Its inverse is called a “logarithm”, and it’s represented as follows:

log2 32 = x

In the previous example “2” is called the “base” of the logarithm. So this formula is read as “x is the base 2 logarithm

of 32” (the result is still 5, by the way).

Here is a quick table of rules that can be used to make logarithms easier to calculate.

Table 1: Some rules that would help us calculating logarithms

Rule Formula

Product logb(x · y) = logb x+ logb y

Quotient logb(
x
y ) = logb x− logb y

Power logb(x
p) = p · logb x

Root logb(
p
√
x) = logbx

p

3.6 Limits
Advanced Wizardry!

We’re entering some complex math territory here, so I will give you an “intuitive” defi-

nition of a limit. Having an idea of what it is will suffice for the needs of this book

Limits are an interesting beast: we can see them as the value a function approaches as the input approaches some

value. Limits are written as follows:

lim
x→a

f(x) = y

3 THE MATHS BEHIND GAME DEVELOPMENT 12



2D Game Development: From Zero To Hero

In this case it can be read as “y is the limit, for x approaching a, of f(x)”. Limits can be seen as, “the more x gets

closer to a, the more f(x) gets closer to y”.

y and a can be any value, including infinity. In fact the following statement is true:

lim
x→+∞

x = +∞

The further we count down the line of numbers the closer we get to infinity. Which also means that:

lim
x→+∞

1

x
= 0

Because as we are counting up with x, we are dividing 1 by bigger and bigger numbers until (at the limit) we reach

0.

Pitfall Warning!

There are some situations where a limit cannot be determined immediately (or some-

times at all). Some of these are +∞−∞, 0 · ∞, ∞
∞ , 0

0 ,∞
0, 00 and 1∞.

3.7 Derivatives
Note!

This is not a complete guide to derivatives, there is so much more to it than written

in here. This is mostly for informational purposes when the term “derivative” will be

used in this book.

Derivatives are technically just a limit, to be precise they are the following limit:

lim
h→0

f(x+ h)− f(h)

h

They also have a nifty property that is used extensively in calculus: if f ′(x) > 0 then f(x) is increasing, while if

f ′(x) < 0 then f(x) is decreasing. This means that the equation f ′(x) = 0 can be used to find local extrema: also

known as “local minimums” and “local maximums”.

There are some rules to quickly derivative functions, here we list some of the most basic.

3 THE MATHS BEHIND GAME DEVELOPMENT 13



2D Game Development: From Zero To Hero

Table 2: Some simple derivation rules (k is any constant number and e is Euler’s number)

Function Derivative

k 0

xk k · xk−1

ex ex

Then there are rules for sums, multiplications and divisions.

Table 3: Some derivation rules for combined functions (a and b are constants)

Functions Derivative

af(x) + bg(x) af ′(x) + bg′(x)

f(x)g(x) f ′(x)g(x) + f(x)g′(x)

f(x)
g(x)

f ′(x)g(x)−f(x)g′(x)
(g(x))2

f(g(x)) f ′(g(x)) · g′(x)

3.8 The Cartesian Plane

The Cartesian plane is a plane that features a 2-dimensional coordinate system. This way we can represent points

with a pair of coordinates (x, y).

yII

IVIII

I

-1-2-3-4-5-6-7-8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

-1

-2

-3

-4

-5

-6

-7

-8

x

Figure 1: Example of a Cartesian plane

3 THE MATHS BEHIND GAME DEVELOPMENT 14



2D Game Development: From Zero To Hero

Using a Cartesian plane we can represent the position of items, as well as their shape, space occupation, as well as

vectors that represent forces, velocity and direction.

It is an essential tool for 2D game development, and it will be one of the abstractions we will use to represent items

in a 2-Dimensional plane.

3.9 Vectors

For our objective, we will simplify the complex matter that is vectors as much as possible.

In the case of 2D game development, a vector is just a pair of values (x,y).

Vectors usually represent a force applied to a body, its velocity or acceleration and are graphically represented with

an arrow.

On a Cartesian plane it can be seen as “the x and y quantities you need to move to get from a point to another”.

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x

(4,1)

Figure 2: Image of a vector

From the previous example, the vector v = (4, 1) can be thought of as the following:

you need to move 4 units on the x axis and 1 on the y axis to go from the origin to the point P (4, 1)

The pain of learning about vectors is paid off by their capacity of being added and subtracted among themselves,

as well as being multiplied by a number (called a “scalar”) and between themselves.

3.9.1 Adding and Subtracting Vectors

Adding vectors is as easy as adding its “members”. Let’s consider the following vectors:

v = (4, 1)

u = (1, 4)

The sum vector s will then be:

s = v + u = (4 + 1, 1 + 4) = (5, 5)

3 THE MATHS BEHIND GAME DEVELOPMENT 15



2D Game Development: From Zero To Hero

Graphically it can be represented by placing the tail of the arrow v on the head of the arrow u, or vice-versa:

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 3: Graphical representation of a sum of vectors

A different example could be the following:

v = (2, 4)

u = (1, 5)

The sum vector s will be:

s = u+ v = (2 + 1, 4 + 5) = (3, 9)

3.9.2 Scaling Vectors

There may be situations where you need to make a vector x times longer. This operation is called “scalar multipli-

cation” and it is performed as follows:

v = (1, 2)

3 · v = (1 · 3, 2 · 3) = (3, 6)

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 4: Example of a vector multiplied by a value of 3

Obviously this works with scalars with values between 0 and 1:

3 THE MATHS BEHIND GAME DEVELOPMENT 16



2D Game Development: From Zero To Hero

v = (4, 2)

1
2 · v = ( 12 · 4, 1

2 · 2) = (2, 1)

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 5: Example of a vector multiplied by a value of 0.5

When you multiply the vector by a value less than 0, the vector will rotate by 180°.

v = (1, 2)

−2 · v = (−2 · 1,−2 · 2) = (−2,−4)

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 6: Example of a vector multiplied by a value of -2

3.9.3 Dot Product

The dot product (or scalar product, projection product or inner product) is defined as follows:

Given two n-dimensional vectors v = [v1, v2, ...vn] and u = [u1, u2, ..., un] the dot product is defined as:

v · u =

n∑
i=1

(vi · ui) = (v1 · u1) + ...+ (vn · un)

So in our case, we can easily calculate the dot product of two two-dimensional vectors v = [v1, v2] and u = [u1, u2]

as:

3 THE MATHS BEHIND GAME DEVELOPMENT 17



2D Game Development: From Zero To Hero

v · u = (v1 · u1) + (v2 · u2)

Let’s make an example:

Given the vectors v = [1, 2] and u = [4, 3], the dot vector is:

v · u = (1 · 4) + (2 · 3) = 4 + 6 = 10

3.9.4 Vector Length and Normalization

Given a vector a = [a1, a2, ..., an], you can define the length of the vector as:

||a|| =
√
a21 + a22 + ...+ a2n

Or alternatively

||a|| =
√
a · a

We can get a 1-unit long vector by “normalizing” it, getting a vector that is useful to affect (or indicate) direction

without affecting magnitude. A normalized vector is usually indicated with a “hat”, so the normalized vector of

a = [a1, a2, ..., an] is

â =
a

||a||

Knowing that the length of a vector is a scalar (a number, not a vector), normal scalar multiplication rules apply.

(See Scaling Vectors)

3.9.5 “Clamping” a Vector

This is not an operation “per se”, but there are occasions where we need to limit the length of a vector: this usually

happens when we are working with velocity, as not limiting it would allow an object to change position faster and

faster, making the game less playable and even breaking time-stepping collision detection algorithms.

To clamp a vector, we need to find its magnitude and direction first, which is the “normalized vector”. Let’s think

about the vector v, its magnitude and direction are:

||v|| =
√
v · v

v̂ =
v

||v||

3 THE MATHS BEHIND GAME DEVELOPMENT 18



2D Game Development: From Zero To Hero

After that, we can build a new vector using the “clamped magnitude” (which we’ll call ||v||clamp), calculated as such:

||v||clamp =

||v|| when ||v|| < ||v||max

||v||max otherwise

To build the new vector, we just need to multiply ||v||clamp by v̂:

vclamp = ||v||clamp · v̂

The new vector will have the same direction as the old one, but its magnitude will be clamped, just like we wanted.

3.10 Geometry

Among all the maths we found so far (and the maths we will explain later), we cannot avoid talking a bit about

geometry: in this book we will talk about the minimal amount of geometry necessary to understand the underlying

concepts of what’s coming up.

3.10.1 Convex vs Concave polygons

A polygon is considered convex essentially when any line (not tangent to an edge or corner) drawn through the

shape crosses the shape itself only twice (at its ends).

A

BC

D

E F
Figure 7: Example of a convex shape

Any shape where you can find at least one line that crosses the shape more than twice is considered “non-convex”

(commonly referred as “concave”).

3 THE MATHS BEHIND GAME DEVELOPMENT 19



2D Game Development: From Zero To Hero

A

B
C

D

E F

G

Figure 8: Example of a concave shape

Note!

Not all non-convex shapes are technically called “concave” (they should be called “non-

convex”), but for the sake of simplicity we’ll use the term “non-convex” and “concave”

interchangeably in this book.

3.10.2 Self-intersecting polygons

Contrary to what many think, polygons can self-intersect too, which can make calculations a lot harder.

A

B

C

D

Figure 9: Example of a self-intersecting polygon

For the sake of game development, we will usually talk about simple polygons which are polygons that don’t self-

intersect and have no holes in them. More strictly we will (for 99.9% of the time) talk about convex simple poly-

gons.

3.10.3 Straight Lines and their equations

One of the main topics we will encounter over and over in our game development adventure will be “straight lines”.

We will need to draw them, see if two straight lines collide, project stuff onto them, and much more. So it’s important

that we know them well.

3 THE MATHS BEHIND GAME DEVELOPMENT 20



2D Game Development: From Zero To Hero

Here’s a straight line:

ax+ by + c = 0

That’s not what you expected, right? What you’ve seen is the “general form” of a straight line’s equation, because

you can represent lines using equations (also circles, and other stuff). This is not a much-used form, though, probably

the most used form is called the “slope-intercept form”:

y = mx+ q

Random Trivia!

To transform a “general form” equation into the relative “slope-intercept from” just

remember the following formulas:

m = −a

b
q = −c

b

This doesn’t work well when b = 0, which will be subject of the next “pitfall”.

Where in this casem is the slope of our straight line, and q represents the so-called y-intercept (the value of y when

x = 0). If q = 0 the line goes through the origin of the Cartesian coordinate system, ifm = 0 the line is horizontal.

Pitfall Warning!

“Vertical straight lines” is where the slope-intercept form fails, in fact vertical straight

lines have an equation in the form of x = k, which would mean that b = 0 which is

problematic (see previous trivia).

3.10.3.1 Getting the equation of a straight line, given two points

We all know that given two points we can strike one and only one line. How many times did you measure two points

(maybe while doing some D.I.Y.) and stroke a line between them?

It will be useful in our adventure to be able to get the equation of a straight line starting from two points, so let’s call

our two points P (x1, y1) and Q(x2, y2), then the straight line that crosses both those points will have equation:

y − y1
x− x1

=
y2 − y1
x2 − x1

This may seem really complicated, but with some small calculations we can reach a formula for our straight line in

any form (generic or “slope-intercept”).

3 THE MATHS BEHIND GAME DEVELOPMENT 21



2D Game Development: From Zero To Hero

Pitfall Warning!

Again, this formula fails when we are dealing with “vertical lines”, because the denom-

inator at the right side of the equation will be zero. But in that case we’ll already know

the formula: it will be x = x1 (which in turn will be equal to x2)

3.10.3.2 Getting the equation, given the slope and a point

If we have a point P (xp, yp) and the slope m (for instance if we need to find a line perpendicular to another line),

in that case we can use the following formula:

y − yp = m(x− xp)

Pitfall Warning!

Guess what? This (again) doesn’t allow us to create “vertical lines”, because we need

a slope value, which we don’t have when it comes to vertical lines. You can see (non

rigorously) a vertical line as a line with “infinite slope”.

3.10.4 Projections

In some situations (as you will see in the SAT), we may need to get to project polygons onto a line, this usually

involves projecting points to a line.

Given the formulas we’ve seen earlier, and doing some thinking, we can easily project a point onto any straight line.

Let’s see how to do it.

First of all, the line we will be projecting onto will have equation y = mx+ q, just as in the slope-intercept formula.

We will assume that we have a point P (xp, yp) that we want to project onto a line r with equation y = mx + q,

withm ̸= 0 (thus excluding horizontal lines). We will call the projected point “P onto r” with the name Pr(xr, yr).

3 THE MATHS BEHIND GAME DEVELOPMENT 22



2D Game Development: From Zero To Hero

P

r

Pr

Figure 10: Projecting the point P onto the line r

First, we need to find the line that goes through P and is perpendicular to r, this is really easy. To find a slope m1

of a line perpendicular to another line with slopem we use the formula

m1 = − 1

m

Pitfall Warning!

This is why we excluded the casem = 0 (horizontal lines), if we didn’t we would have

the chance of havingm1 = 1
0 which doesn’t make sense.

In this case we can easily conclude that if m = 0, the projection of the point P onto

the line r has coordinates (xP , y) (with y taken from the line we’re projecting onto).

Now we have a point and a slope, so we can use one of the formulas we’ve already seen to find the line with that

slope that crosses P :

y − yp = m1(x− xp) ⇔ y − yp = − 1

m
(x− xp)

To find Pr we just need to find the point where the two lines collide, which is the solution to the equation system:

y = mx+ q

y − yp = − 1
m (x− xp)

Which finds solution in:

3 THE MATHS BEHIND GAME DEVELOPMENT 23



2D Game Development: From Zero To Hero

x =
xp+myp−mq

m2+1

y =
mxp+m2yp+q

m2+1

The coordinates x and y we just found are actually the coordinates xr and yr of our projected point Pr.

Pitfall Warning!

Due to the fact that we used m1 = − 1
m the previous results are not valid for m = 0.

The denominator of the results gives no issue, sincem2 +1 = 0 does not have a solu-

tion in real numbers (and we won’t need to delve into the Complex number territory).

3.10.4.1 Projecting arbitrary lines on the axes

Similarly to what we’ve done with points, we can project arbitrary lines (or, to be precise, the ends of such lines)

onto the axes. This will help us in doing some calculations later (when we’ll talk about SAT).

To project any line r to the x-axis we can just “pass all the line’s points through” the following function:

projx(Pr(x, y)) = (x, 0)

for each point Pr in the line r.

If we want to project such line on the y-axis, we can just use this other function:

projy(Pr(x, y)) = (0, y)

for each point Pr in the line r.

We can see an intuitive representation of projecting a line onto the axes below:

3 THE MATHS BEHIND GAME DEVELOPMENT 24



2D Game Development: From Zero To Hero

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 11: Projecting a line onto the axes

3.10.4.1.1 How does it work?

Let’s take the point P (2, 5) from the previous figure. We want to project it on the x axis: that means we need to

find a line that is 90 degrees with the x axis and passes through P .

Such line is the line with equation x = 2, now to find the projection of P onto the x axis, we will just need to solve a

simple equation system.

x = 2

y = 0

Where y = 0 is the equation of the x axis. So our projected point is Px(2, 0).

Similar thing goes for projecting the point on the y axis: the line that is 90 degrees with the y axis and goes through

P has equation y = 5, the y axis has equation x = 0, thus the system of equation is solved with Py(0, 5).

3.11 Matrices

3.11.1 What is a matrix

Matrices are essentially anm× n array of numbers, which are used to represent linear transformations.

Here is an example of a 2× 3 matrix.

A2,3 =

2 1 4

3 2 0



3 THE MATHS BEHIND GAME DEVELOPMENT 25



2D Game Development: From Zero To Hero

3.11.2 Matrix sum and subtraction

Summing and subtractingm×nmatrices is done by summing or subtracting each element, here is a simple example.

Given the following matrices:

A2,3 =

2 1 4

3 2 0

B2,3 =

1 3 0

4 2 4


We have that:

A2,3 +B2,3 =

2 1 4

3 2 0

+

1 3 0

4 2 4

 =

2 + 1 1 + 3 4 + 0

3 + 4 2 + 2 0 + 4

 =

3 4 4

7 4 4


3.11.3 Multiplication by a scalar

Multiplication by a scalar works in a similar fashion to vectors, given the matrix:

A2,3 =

2 1 4

3 2 0


Multiplication by a scalar is performed by multiplying each member of the matrix by the scalar, like the following

example:

3 ·A2,3 = 3 ·

2 1 4

3 2 0

 =

3 · 2 3 · 1 3 · 4

3 · 3 3 · 2 3 · 0

 =

6 3 12

9 6 0


3.11.4 Transposition

Given an m × n matrix A, its transposition is an n ×m matrix AT constructed by turning rows into columns and

columns into rows.

Given the matrix:

A2,3 =

2 1 4

3 2 0


The transpose matrix is:

AT
2,3 =


2 3

1 2

4 0



3 THE MATHS BEHIND GAME DEVELOPMENT 26



2D Game Development: From Zero To Hero

3.11.5 Multiplication between matrices

Given 2 matrices with sizes m × n and n × p (mind how the number of rows of the first matrix is the same of the

number of columns of the second matrix):

A3,2 =


2 3

1 2

4 0

B2,3 =

2 3 4

0 1 0



We can calculate the multiplication between these two matrices, in the following way.

First of all let’s get the size of the resulting matrix, which will be alwaysm× p.

Now we have the following situation:


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


? ? ?

? ? ?

? ? ?


Matrix multiplication is called a “rows by columns” multiplication, so to calculate the first row - first column value

we’ll need the first row of one matrix and the first column of the other.


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


? ? ?

? ? ?

? ? ?


The values in the example will be combined as follows:

2 · 2 + 3 · 0 = 4

Obtaining the following:


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


4 ? ?

? ? ?

? ? ?


Let’s try the next value:

3 THE MATHS BEHIND GAME DEVELOPMENT 27



2D Game Development: From Zero To Hero


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


4 ? ?

? ? ?

? ? ?


The values will be combined as follows:

2 · 3 + 3 · 1 = 9

Obtaining:


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


4 9 ?

? ? ?

? ? ?


Same goes for the last value, when we are done with the first row, we keep going similarly with the second row:


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


4 9 8

? ? ?

? ? ?


Which leads to the following calculation:

1 · 2 + 2 · 0 = 2

Which we will insert in the result matrix:


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


4 9 8

2 ? ?

? ? ?


You can try completing this calculation yourself, the final result is as follows:


2 3

1 2

4 0

×

2 3 4

0 1 0

 =


4 9 8

2 5 4

8 12 16



3 THE MATHS BEHIND GAME DEVELOPMENT 28



2D Game Development: From Zero To Hero

Note!

Multiplication between matrices is non commutative, which means that the result of

A × B is not equal to the result of B × A: actually one of the results may not even

be possible to calculate.

3.11.6 Other uses for matrices

Matrices can be used to quickly represent equation systems, with equation that depend on each other. For instance:

2 3 6

1 4 9



x

y

z

 =

4
5



Can be used to represent the following system of equations:

2x+ 3y + 6z = 4

1x+ 4y + 9z = 5

Or, as we’ll see, matrices can be used to represent transformations in the world of game development.

3.12 Trigonometry

When you want to develop a game, you will probably find yourself needing to rotate items relative to a certain point

or relative to each other. To do so, you need to know a bit of trigonometry, so here we go!

3.12.1 Radians vs Degrees

In everyday life, angles are measured in degrees, from 0 to 360 degrees. In some situations in maths, it is more

comfortable to measure angles using radians, from 0 to 2π.

You can convert back and forth between radians and degrees with the following formulas:

angle in degrees = angle in radians · 180
π

angle in radians = angle in degrees · π

180

This book will always refer to angles in radians, so here are some useful conversions, ready for use:

3 THE MATHS BEHIND GAME DEVELOPMENT 29



2D Game Development: From Zero To Hero

Table 4: Conversion between degrees and Radians

Degrees Radians

0° 0

30° π
6

45° π
4

60° π
3

90° π
2

180° π

360° 2π

3.12.2 Sine, Cosine and Tangent

The most important trigonometric functions are sine and cosine. They are usually defined in reference to a “unit

circle” (a circle with radius 1).

Given the unit circle, let a line through the origin with an angle θ with the positive side of the x-axis intersect such

unit circle. The x coordinate of the intersection point is defined by the measure cos(θ), while the y coordinate is

defined by the measure sin(θ).

yII

IVIII

I

-1 1

1

-1

x

1

Figure 12: Unit Circle definition of sine and cosine

For the purposes of this book, we will just avoid the complete definition of the tangent function, and just leave it as

a formula of sine and cosine:

tan(θ) =
sin(θ)

cos(θ)

3 THE MATHS BEHIND GAME DEVELOPMENT 30



2D Game Development: From Zero To Hero

3.12.3 Pythagorean Trigonometric Identity

One of the most important identities in Trigonometry is the “Pythagorean Trigonometric Identity”, which is expressed

as follows, valid for each angle θ:

sin2(θ) + cos2(θ) = 1

Using this identity, you can express functions in different ways:

cos2(θ) = 1− sin2(θ)

sin2(θ) = 1− cos2(θ)

Also remember that sin2(θ) = (sin(θ))2 and cos2(θ) = (cos(θ))2.

3.12.4 Reflections

Sometimes we may need to reflect an angle to express it in an easier way, and their trigonometric formulas will be

affected, so the following formulas may come of use:

Table 5: Some reflection formulas for trigonometry

Reflection Formulas

sin(−θ) = −sin(θ)

cos(−θ) = cos(θ)

sin(π2 − θ) = cos(θ)

cos(π2 − θ) = sin(θ)

sin(π − θ) = sin(θ)

cos(π − θ) = −cos(θ)

sin(2π − θ) = −sin(θ) = sin(−θ)

cos(2π − θ) = cos(θ) = cos(−θ)

3.12.5 Shifts

Trigonometric functions are periodic, so you may have an easier time calculating them when their arguments are

shifted by a certain amount. Here we can see some of the shift formulas:

3 THE MATHS BEHIND GAME DEVELOPMENT 31



2D Game Development: From Zero To Hero

Table 6: Some Shift Formulas for Trigonometry

Shift Formulas

sin(θ ± π
2 ) = ±cos(θ)

cos(θ ± π
2 ) = ∓sin(θ)

sin(θ + π) = −sin(θ)

cos(θ + π) = −cos(θ)

sin(θ + k · 2π) = sin(θ)

cos(θ + k · 2π) = cos(θ)

3.12.6 Trigonometric Addition and subtraction

Sometimes you may need to express a trigonometric formula with a complex argument by splitting such argument

into different trigonometric formulas. If such argument is a sum or subtraction of angles, you can use the following

formulas:

Table 7: Some addition and difference identities in trigonometry

Addition/Difference Identities

sin(α± β) = sin(α)cos(β)± cos(α)sin(β)

cos(α± β) = cos(α)cos(β)∓ sin(α)sin(β)

3.12.7 Double-Angle Formulae

Other times (mostly on paper) you may have an argument that is a multiple of a known angle, in that case you can

use double-angle formulae to calculate them.

Table 8: Some double-angle formulae used in trigonometry

Double-Angle Formulae

sin(2θ) = 2sin(θ)cos(θ)

cos(2θ) = cos2(θ)− sin2(θ)

3.12.8 Inverse Formulas

As with practically all maths formulas, there are inverse formulas for sine and cosine, called arcsin and arccos,

which allow to find an angle, given its sine and cosine.

In this book we won’t specify more, besides what could be the most useful: the 2-argument arctangent.

3 THE MATHS BEHIND GAME DEVELOPMENT 32



2D Game Development: From Zero To Hero

This formula allows you to find the angle of a vector, relative to the coordinate system, given the x and y coordinates

of its “tip”, such angle θ is defined as:

θ = arctan(
y

x
)

yII

IVIII

I

-1-2-3-4-5-6-7-8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

-1

-2

-3

-4

-5

-6

-7

-8

x

(x,y)

Figure 13: Graphical plotting of the angle of a vector

3.13 Numerical Analysis

Here we will give some pointers over some algorithms and methods that may be useful to better explain some topics

treated in this book. Feel free to skip or quickly read this section if you don’t want to dive into too much detail over

this kind of maths.

3.13.1 Newton-Raphson method

Advanced Wizardry!

This section treats of how to approximate a function value in an iterative way. This will

be useful to know what the “Fast Inverse Square Root” algorithm uses. Feel free to

skim through this section.

Also known as Newton’s method, this is an iterative algorithm that is used to get progressively better approximations

to the roots of a function.

The algorithm starts with a “guess”, called x0, and produces the first approximation using the formula:

x1 = x0 −
f(x0)

f ′(x0)

Each subsequent guess (and thus iteration) can be obtained similarly by using the formula:

3 THE MATHS BEHIND GAME DEVELOPMENT 33



2D Game Development: From Zero To Hero

xn+1 = xn − f(n)

f ′(n)

And such guess will be more precise than the previous one (if we don’t consider some situations where approaching

the root can be problematic or not possible). The algorithm will stop when you reach an approximation that is “good

enough”.

Obviously all limitations of standard functions apply, such as domain and trouble with divisions by zero.

3.14 Coordinate Systems on computers

When it comes to 2D graphics on computers, our world gets quite literally turned upside down.

In our maths courses we learned about the Coordinate Plane, with an origin and an x axis going from left to right and

a y axis going from bottom to top, where said axis cross it’s called the “Origin”.

yII

IVIII

I

-1-2-3-4-5-6-7-8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

-1

-2

-3

-4

-5

-6

-7

-8

x

Figure 14: Image of a coordinate plane

When it comes to 2D graphics on computers and game development, the coordinate plane looks like this:

Figure 15: Image of a screen coordinate plane

The origin is placed on the top left of the screen (at coordinates (0,0)) and the y axis is going from top to bottom.

It’s a little weird at the beginning, but it’s not hard to get used to it.

3 THE MATHS BEHIND GAME DEVELOPMENT 34



2D Game Development: From Zero To Hero

3.15 Transformation Matrices

There will be a time, in our game development journey where we need to rotate an object, and that’s bound to be

pretty easy because rotation is something that practically all engines and tool kits do natively. But also there will be

times where we need to do transformations by hand.

An instance where it may happen is rotating an item relative to a certain point or another item: imagine a squadron

of war planes flying in formation, where all the planes will move (and thus rotate) relative to the “team leader”.

In this chapter we’ll talk about the 3 most used transformations:

• Stretching/Squeezing/Scaling;

• Rotation;

• Shearing.

And to do so, we will use the following reference image, complete with a quadrant of the Cartesian plane.

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 16: Reference image for transformation matrices

3.15.1 Stretching

Stretching is a transformation that enlarges all distances in a certain direction by a defined constant factor. In 2D

graphics you can stretch (or squeeze) along the x-axis, the y-axis or both.

If you want to stretch something along the x-axis by a factor of k, you will have the following system of equations:

x′ = k · x

y′ = y

which is translated in the following matrix form:

x′

y′

 =

k 0

0 1

x
y



3 THE MATHS BEHIND GAME DEVELOPMENT 35



2D Game Development: From Zero To Hero

Likewise, you can stretch something along the y-axis by a factor of k by using the following matrices:

x′

y′

 =

1 0

0 k

x
y


Stretching our reference image along the x and y axes respectively would look something like this:

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 17: Stretching along the x and y axes

You can mix and match the factors and obtain different kinds of stretching, if the same factor k is used both on the

x and y-axis, we are performing a scaling operation, like follows:

x′

y′

 =

k 0

0 k

x
y


In instead of stretching you want to squeeze something by a factor of k, you just need to use the following matrices

for the x-axis:

x′

y′

 =

 1
k 0

0 1

x
y


and respectively, the y-axis:

x′

y′

 =

1 0

0 1
k

x
y


3.15.2 Rotation

If you want to rotate an object by a certain angle θ, you need to decide upon two things (besides the angle of

rotation):

• Direction of rotation (clockwise or counterclockwise);

• The point of reference for the rotation.

3 THE MATHS BEHIND GAME DEVELOPMENT 36



2D Game Development: From Zero To Hero

3.15.2.1 Choosing the direction of the rotation

We will call TR the transformation matrix for the “rotation” functionality.

Similarly to stretching, rotating something of a certain angle θ leads to the following matrix form:

x′

y′

 = TR

x
y


If we want to rotate something clockwise, relative to its reference point, we will have the following transformation

matrix:

TR =

 cos(θ) sin(θ)

−sin(θ) cos(θ)


This could how our square could look, after a rotation:

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 18: The result of applying a rotation matrix

If instead we want our rotation to be counterclockwise, we will instead use the following matrix:

TR =

cos(θ) −sin(θ)

sin(θ) cos(θ)


Pitfall Warning!

These formulas assume that the x-axis points right and the y-axis points up, if

the y-axis points down in your implementation, you need to swap the matrices.

3 THE MATHS BEHIND GAME DEVELOPMENT 37



2D Game Development: From Zero To Hero

3.15.2.2 Rotating referred to an arbitrary point

The biggest problem in rotation is rotating an object relative to a certain point: you need to know the point of rotation

(xp, yp) in relation to the origin of the coordinate system you’re using, and modify the matrices as follows:

x′

y′

 = TR

x− xp

y − yp

+

xp

yp


In short, you need to rotate the item by first “bringing it centered to the origin”, rotate it, and then bring it back into

its original position.

3.15.3 Shearing

During stretching, we used the elements that are in the “main diagonal” to stretch our objects. If we modify the

elements in the “anti-diagonal”, we will obtain shear mapping (or shearing).

Shearing will move points along a certain axis with a “strength” defined by the distance along the other axis: if we

shear a rectangle, we will obtain a parallelogram.

A shear parallel to the x-axis will have the following matrix:

x′

y′

 =

1 k

0 1

x
y


While a shear parallel to the y-axis will instead have the following matrix:

x′

y′

 =

1 0

k 1

x
y


Here is how shearing would look, as an example:

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 19: Shearing along the x and y axes

3 THE MATHS BEHIND GAME DEVELOPMENT 38



2D Game Development: From Zero To Hero

3.16 Basics of Probability

Games can make heavy use of probability: for instance when spawning items and treasures. Having a basic grasp

of how probability works can make things a lot easier.

3.16.1 A simple definition of probability

We will define the probability of an event A with a fraction:

P (A) =
The outcome is A

All Outcomes

The numerator is called “event space”, while the denominator is called “sample space”.

For instance: let’s take a coin. We want to calculate the probability that a coin toss ends with “head”: first we count

how many outcomes are possible. Since a coin can land on “tails” or “heads”, we have 2 possible outcomes, and

head is only one of them.

For practicality, we will call “Heads”H and “Tails” T .

Thus:

P (H) =
1

2
= 0.5

This result can be converted to a percentage, by multiplying it by 100. That means that there’s a 50% chance that

a coin toss ends in “heads”, shocking, I know.

What if we wanted to know the probability of a coin “not landing on heads”?

Here’s a useful formula:

P (A) = 1− P (A)

Thus, by applying such formula on our coin example we have:

P (H) = 1− P (A) = 1− 1

2
=

1

2
= P (T )

Perfect. Everything as expected.

3.16.2 Probability of independent events

But what if we wanted to calculate the probability of more than one event?

3 THE MATHS BEHIND GAME DEVELOPMENT 39



2D Game Development: From Zero To Hero

If our events are independent (that means that the result of one doesn’t affect the result of others), we can use the

following formula:

P (A and B) = P (A ∩B) = P (A) · P (B)

Let’s return to our coin example: if we wanted to know the probability of two coin tosses landing both on heads, we

would have:

P (H and H) = P (H) · P (H) =
1

2
· 1
2
=

1

4

Let’s demonstrate that intuitively: since the example is simple, we can literally count the possible outcomes:

Table 9: Counting the possible outcomes of two coin tosses

First Toss Second Toss

Heads Heads

Heads Tails

Tails Heads

Tails Tails

Now we know that there are 4 possible outcomes, and the “Heads + Heads” is only one of them. This confirms our

formula.

In the exact same way, we can calculate the probability of a “Heads + Tails” result:

P (H and T ) = P (H) · P (T ) =
1

2
· 1
2
=

1

4

And the previous table confirms our calculations.

Pitfall Warning!

Someone may argue that the probability of “Heads + Tails” is 1
2 , but that would not be

correct. We are still strictly tied to the events, that means that “Heads + Tails” (First

toss is heads, second toss is tails), is different from “Tails + Heads” (first toss is tails,

second is heads).

3.16.3 Probability of mutually exclusive events

In case the events are mutually exclusive (that means, if one event happens, none of the others can happen), the

following formula may be helpful in some occasions:

3 THE MATHS BEHIND GAME DEVELOPMENT 40



2D Game Development: From Zero To Hero

P (A or B) = P (A ∪B) = P (A) + P (B)

Going back to our coin example: the probability of a coin toss being “either heads or tails” is 1
2 + 1

2 = 1.

Another example could be done using a 6-sided dice: each face can be on top with a probability of 1
6 . Let’s calculate

the probability of either 1 or 6 being face up:

P (1 or 6) = P (1) + P (6) =
1

6
+

1

6
=

2

6
=

1

3

Note!

Considering the latest “tossing two coins” example, we can calculate the probability

of “one coin lands on heads and the other lands on tails” with the previous formulas,

since coin tosses tick both the “independence” and “mutual exclusivity” boxes.

P ((H and T ) or (T and H)) = P (H and T ) + P (T and H) =
1

4
+

1

4
=

1

2

3.16.4 Probability of non-mutually exclusive events

Not all events are mutually exclusive. Let’s think, for instance, about a deck of cards: what if you wanted to know

the probability of drawing either a card of hearts or a face card (Jack, Queen or King)?

We need to use a different formula in that case, which is the following one:

P (A or B) = P (A ∪B) = P (A) + P (B)− P (A and B)

Note!

Why are we subtracting P (A and B)? Because if we didn’t, we would be counting the

face cards of hearts twice: once when we count the card of hearts, and once when we

count the face cards.

Let’s continue with our example.

A standard deck has 52 cards, 13 for each seed. This means we would have 13 cards of hearts: P (A) = 13
52 .

The same deck of cards also has 3 “face cards” for each seed, totalling 12: P (B) = 12
52 .

Since there are face cards of the hearts seed, we need to account for those too, totalling 3: P (A and B) = 3
52 .

This means that the probability we’re looking for is calculated as follows:

3 THE MATHS BEHIND GAME DEVELOPMENT 41



2D Game Development: From Zero To Hero

P (A orB) = P (A) + P (B)− P (A and B) =
13

52
+

12

52
− 3

52
=

22

52
=

11

26

3.16.5 Conditional Probability

Advanced Wizardry!

Conditional probability doesn’t have a lot of uses in game development, but it’s worth

mentioning it if you want to have a probabilistic approach to AI. Feel free to quickly

skim through this section.

Sometimes you may need to consider the probability of a certain event, given that another event happens. This is

called “conditional probability”, and it can be calculated as follows:

P (A|B) =
P (A and B)

P (B)
=

P (A ∩B)

P (B)

Conditional probability can be used to enrich the decision making used in enemy AI, for instance.

Let’s take a concrete example, taken straight from the famous tabletop RPG Dungeons&Dragons, and see how

probability can be applied to decision making.

You’re fighting against an enemy. Both you and the enemy are close to fatal damage: you have 1HP, while

the enemy has 3HP left.

To attack an enemy you need to roll a 20-sided dice (called a d20): if the number rolled is 13 or higher you

will hit, else you will miss.

If you hit, you will roll a 6-sided dice (called a d6): the number rolled will decide how much damage you will

deal, so you need 3 or more.

We need to find the probability of killing the enemy within the next turn to decide our next move.

First of all, let’s name the events:

• H Will be the event “hit”, which means that the d20 rolled a number that is 13 or higher.

• F Will be the event “fatal damage”, which means that the d6 rolled a number that is 3 or higher.

Now we will calculate the probabilities we need for our calculation:

P (H) =
8

20
=

2

5

P (F ) =
4

6
=

2

3

Our objective is calculating “the probability of doing at least 3HP of damage, given that we hit the enemy”. This is

represented as:

3 THE MATHS BEHIND GAME DEVELOPMENT 42



2D Game Development: From Zero To Hero

P (F |H) =
P (F ∩H)

P (H)

This means we will have to calculate another probability, which is quite easy:

P (F ∩H) = P (F ) · P (H) =
2

3
· 2
5
=

4

15

Now we are ready to calculate everything we need:

P (F |H) =
P (F ∩H)

P (H)
=

4
15
2
5

=
4

15
· 5
2
=

2

3

Given a 66% chance of success, you may decide that attacking is worth the risk. Such decision may be hard-coded

into an AI, for instance if the probability is higher than 50% the AI may choose to attack instead of retreating and

call for backup.

3.16.6 Uniform Distributions

In most cases, we will speak in terms of “uniform distributions”, that means that we will be operating on a system

where all outcomes have the same probability of happening.

That means that all dices are “fair”, all coins are “fair” and all our “bingo bags” have only one instance of a certain

number, all of the same size, shape and feel (thus making it impossible for a number to appear more often than any

other).

In the grand scheme of things, we are assuming that the random() function of our programming language is a uniform

distribution, where any number may come out with the same probability of any other.

3.16.7 How probability is used in games

You can use probability to govern how items spawn: surely you want more precious items to spawn more rarely (with

less probability), while more common items should spawn more often.

Let’s say we want an item to spawn with 20% probability: how can we do it?

20% probability can be rewritten as the decimal 0.2, such decimal can be obtained with the fraction 1
5 . We have

practically solved the problem: we decide on one number between 1 and 5 (inclusive) and we will know that such

number will be “extracted” 20% of the time.

Listing 2: 1 (out of 5) will be extracted with about 20% probability

1 function main(){

2 in t happened = 0

3 // Monte Carlo Method we do 10000 "extractions"

4 repeat 10000 times{

5 // Get a random number between 1 and 5

3 THE MATHS BEHIND GAME DEVELOPMENT 43



2D Game Development: From Zero To Hero

6 in t n = get random integer between 1 and 5 inclusive

7 i f n == 1:

8 // If it's 1, we have a match!

9 happened = happened + 1

10 }

11 // We print the result

12 print(happened / 10000)

13 }

We will obtain the following result.

Figure 20: Running the probability_20 example shows the probability floating around 20%

But what if we wanted to be a lot more precise? Let’s say we want to spawn an item with 13% probability, how would

we go at it?

It’s actually pretty simple: out 13% probability can be represented by the fraction 13
100 . Each number between 1 and

100 (inclusive) has a 1
100 chance of being extracted. Since extracting one number bars any other number to appear

in that extraction we can use the “mutually exclusive events” formula.

P (1 or 2 or ... or 13) = P (1) + P (2) + ...+ P (13) =
1

100
+

1

100
+ ...+

1

100
=

13

100

Tip!

If the example is not 100% clear yet, try reading the previous formula right-to-left. That

may help.

This means that the event “a number between 1 and 13 appears” has a 13% probability of appearing. We can

simplify that statement with “a number less or equal than 13”. We can experiment that easily with the following

code:

Listing 3: A number less or equal than 13 (out of 100) has 13% probability of appearing

1 function main(){

2 in t happened = 0

3 // Monte Carlo Method we do 10000 "extractions"

4 repeat 10000 times{

5 // Get a random number between 1 and 100

3 THE MATHS BEHIND GAME DEVELOPMENT 44



2D Game Development: From Zero To Hero

6 in t n = get random integer between 1 and 100 inclusive

7 i f n <= 13:

8 // If it's less or equal than 13, we got a match

9 happened = happened + 1

10 }

11 // We print the result

12 print(happened / 10000)

13 }

Figure 21: Running the probability_le_13 example shows the probability floating around 13%

Tip!

You can extend the example above to fractions of a percentage by using bigger num-

bers: if you wanted a 13.5% probability, you would use all numbers less than or equal

to 135, out of 1000.

3.16.8 Tiered Prize Pools

We can use what we learned with probability to create a tiered prize pool. For instance we decide that killing a

certain enemy will always drop something, the tier of such item is according to the follow probability list:

• 50% probability for a common item to drop (for instance a scrap of leather);

• 30% probability for an uncommon item to drop (like a lower-grade potion);

• 15% probability for a rare item to drop (a good sword, for instance);

• 5% probability for an epic item to drop (a unique armor, for example);

0 10050%
Common

30%
Uncommon

15%
Rare

5%
Epic

Figure 22: Intuitive representation of our prize pool

In that case we can chain ifs to bring our tiered prize pool to life:

Listing 4: How to implement a tiered prize pool selector

1 function get_tiered_drop () -> in t {

2 // 1 = Common , 2 = Uncommon , 3 = Rare , 4 = Epic

3 in t n = get random integer between 1 and 100 inclusive

4 i f (n <= 50){

3 THE MATHS BEHIND GAME DEVELOPMENT 45



2D Game Development: From Zero To Hero

5 // Common Tier

6 return 1;

7 }

8 i f (n <= 80){

9 // Uncommon Tier

10 // Since n <=50 has already returned false , we know this

11 // branch will only happen if 50<n<=80

12 return 2;

13 }

14 i f (n <= 95){

15 // Rare Tier

16 // Since both n<=50 and n<=80 both returned false , we know

17 // this branch will only happen if 80<n<=95

18 return 3;

19 }

20 // Epic Tier

21 // All other branches failed , so we'll get here only if

22 // 95<n <=100

23 return 4;

24 }

3.16.8.1 Introducing a “luck” stat

In many RPGs there is a “luck” statistic that affects how item drops happen, in that case we will need to change how

tiered prize pools are given out. Things can get complicated quite quickly.

Let’s imagine a simple situation: one point of “luck” gives a 1% probability of getting an item of each tier higher

than “Common”, while at the same time reducing the probability of finding a “common” item.

At a first glance, it seems simple: take each “non-common” class and “add 1”, then take the “common” class and

“remove 1 for each point given”. But what would happen if the luck stat is higher than the probability of a “common”

item? It should probably start taking away probability from “uncommon” items to give out “rare” and “epic” items.

Let’s see a possible implementation:

Listing 5: A possible implementation of a luck stat

1 // Our probabilities , from least to most common

2 List pool = [

3 "EPIC": 5,

4 "RARE": 15,

5 "UNCOMMON": 30,

6 "COMMON": 50,

7 ]

8

9 // Our "luck stat": each point gives 1% more chance to get a higher -tier item

10 in t LUCK = 25;

11

12 // We cap the Luck stat at 100, the limit is 100% epic items

3 THE MATHS BEHIND GAME DEVELOPMENT 46



2D Game Development: From Zero To Hero

13 LUCK = min(LUCK , 100);

14

15 // We "overload" the prize pool , making the sum go over 100%

16 List overloaded_pool = new List();

17

18 for each item , probability in pool:

19 append the pair "item: probability + LUCK" to the overloaded pool

20

21 // We calculate how much we "overloaded" the prize pool

22 in t overload_factor = sum(probabilities in overloaded_pool) - 100;

23

24 // We rebalance the prizes to a total of 100, from most to least common

25 List rebalanced_pool = new List();

26 // We need to start from the most common , which means we will iterate backwards

27 for each item , probability in overloaded_pool , going backwards{

28 // This will be modified later , if the pool is "overloaded"

29 in t new_probability = probability;

30 // If the prize pool is still "overloaded"

31 i f (overload_factor > 0){

32 // We calculate a "discharge factor" of sorts

33 in t value_to_remove = min(probability , overload_factor);

34 // We reduce our "overload"

35 in t overload_factor = overload_factor - value_to_remove;

36 // And put the new probability for the class

37 new_probability = probability - value_to_remove;

38 }

39 // We append the new pool item

40 append the pair "item: new_probability" to the rebalanced_pool;

41 }

3 THE MATHS BEHIND GAME DEVELOPMENT 47



2D Game Development: From Zero To Hero

4 Some Computer Science Fundamentals

The computing scientist’s main challenge is not to get confused by the

complexities of his own making.

Edsger W. Dijkstra

In order to understand some of the language that is coming up, it is necessary to learn a bit of the computer science

language and fundamentals.

This chapter will briefly explain some of the language and terms used, their meaning and how they contribute to

your activity of developing games.

4.1 Number representations

When you work with computers, it’s impossible to avoid learning a bit of number representations. Computers work

with a different logic than humans do: humans have complex minds and thoughts, while most of the time computers

work in ones and zeroes. Most of what we see on a screen can be reduced to electrons going through a semiconductor

in kind of an orderly fashion: changing from 0 volts (ground) to 5 volts.

4.1.1 The most used representations

Here we will take a quick look at the most used representations. Some are more fundamental than others, but they

are all useful in their own way.

Each representation will use a subscript to represent its representation. If no subscript is present it means the

standard decimal representation is used.

4.1.1.1 Decimal

This is the standard decimal notation everyone is used to, we have 10 digits at our disposal:

0 1 2 3 4 5 6 7 8 9

And we place them in certain positions (units, tens, hundreds, thousands, etc…) to represent a certain quantity. We

will use this as a basis for all other representations.

So if you want to represent 9 + 1 you will use the 1 digit, followed by the 0 digit to make 10.

4.1.1.2 Binary

This is the most used representation in computer science, we have only two digits at our disposal: 0 1.

Thus if you want to make 1bin + 1bin, you will have to use the 1 digit, followed by the 0 digit, thus making 10bin,

which is the binary representation of 2.

Here are the first 10 numbers for comparison purposes:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 48



2D Game Development: From Zero To Hero

Table 10: Comparison between decimal and binary representations

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

Binary numbers can be used at low level to represent any kind of “binary condition” too: yes/no, true/false are

usually mapped to 1 and 0 respectively. This will probe useful in some cases where we will use “binary numbers” to

represent groups of “binary conditions” in a compact way, but that’s an advanced thing we’ll see later.

4.1.1.3 Octal

In the octal representation we have 8 digits at our disposal:

0 1 2 3 4 5 6 7

Thus the representation of the decimal number 8 in the octal system is 10oct.

The octal number system doesn’t find much use in computer science besides being a quicker way to represent binary

numbers. The conversion is quite easy and will be explained in a bit.

Here’s a quick comparison between decimal and octal representations:

Table 11: Comparison between decimal and octal representations

Decimal Octal

0 0

1 1

2 2

3 3

4 SOME COMPUTER SCIENCE FUNDAMENTALS 49



2D Game Development: From Zero To Hero

Decimal Octal

4 4

5 5

6 6

7 7

8 10

9 11

10 12

4.1.1.4 Hexadecimal

Hexadecimal is definitely the secondmost used representation in computer science, due to how easy it is to represent

4 bytes in a very compact notation.

In the hexadecimal notation, we have sixteen digits at our disposal:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Here’s a table of the first 20 numbers to clarify a bit how things work:

Table 12: Comparison between decimal and hexadecimal representations

Decimal Hex

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

4 SOME COMPUTER SCIENCE FUNDAMENTALS 50



2D Game Development: From Zero To Hero

Decimal Hex

14 E

15 F

16 10

17 11

18 12

19 13

20 14

4.1.2 Converting between decimal and binary

The algorithm to convert between decimal and binary is quite simple. It is an iterative algorithm that consists in

integer dividing the number by 2, until the result of the division is 1. The modulo of such divisions will make up our

binary number.

An example is worth a thousand words: let’s convert the number 38 to binary.

First of all, we integer divide 38 by two: the result is 19, there is no remainder, so we’ll use zero.

Dividend Remainder

38 0

19

Let’s continue: we integer divide 19 by two: the result is 9, with 1 as remainder.

Dividend Remainder

38 0

19 1

9

We iterate some more, by integer dividing until we get 1 as a dividend, at that point we make the last division, which

will have remainder 1:

Dividend Remainder

38 0

19 1

9 1

4 SOME COMPUTER SCIENCE FUNDAMENTALS 51



2D Game Development: From Zero To Hero

Dividend Remainder

4 0

2 0

1 1

Now we just need to read our remainders from bottom to top. So the binary representation of 38dec is 100110bin.

Note!

This is actually a much more generic algorithm: you can convert from decimal to octal

and hexadecimal for instance, just by dividing by 8 and 16 respectively. You can convert

38 to octal and hexadecimal as an exercise: the results are 46oct and 26hex.

4.1.2.1 Two’s complement

So far we’ve seen how to convert positive integers from decimal to binary, but how do we represent negative

integers?

That’s where “two’s complement” representation comes into play: there is a bunch of theory behind why it’s called

this way, and how it works, but what we need to know will be how to represent a negative number.

Let’s start with a simple example with 3 binary digits (this means we’re pretending our computer can process only

up to 3 bits):

Decimal Binary

-4 100

-3 101

-2 110

-1 111

0 000

1 001

2 010

3 011

As you can see, the most significant bit being set (that means having value of 1) is a telltale sign that a number

is negative. But there are some interesting features about two’s complement that make it a very nice method of

representing integers.

This is because it makes easier to implement hardware that does operations on such numbers. If we sum 3 and −3

in two’s complement we will obtain the following:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 52



2D Game Development: From Zero To Hero

011

+ 101

1000

This may look completely wrong, but since our “computer” can only process up to 3 bits, the left-most bit will be

discarded, giving us the right result: 000bin.

Now let’s see how to represent negative numbers in two’s complement.

To represent a negative binary number in two’s complement you flip all the bits of such number, then add 1.

As usual, an example is worth a thousand words. We want to convert the number −38 into binary.

First of all we need to define what our range of numbers will be, so that we know how many bits we will use. This is

done because this range will be equally split between positive and negative numbers. In this example I will choose

a normal 8-bit representation, which can represent numbers spacing from -128 to 127.

The first step is to convert 38 to binary, which as we saw is 100110bin. We will pad this binary number to 8 bits,

obtaining 00100110bin as a result.

Now we just need to invert the all the bits in the number, obtaining 11011001bin as a result.

Last step is adding 1 to what we got in the previous step, thus the final result is 11011010bin.

Note!

The more perceptive of you may have noticed a problem: what if we tried to represent

the number 128 with 8 bits?

We would obtain 1000000bin which is actually the representation of -128 in two’s com-

plement. This is called an “integer overflow”, so be careful when mixing unsigned and

signed integers.

4.1.2.2 Floating point

[This section is a work in progress and it will be completed as soon as possible]

4.1.3 Converting between binary and octal

As mentioned before, octal can be used as a “shorthand way” to represent binary. The conversion is pretty simple.

To convert from binary to octal, take the binary digits in groups of 3 (with the necessary padding) and convert

them in octal. Then just “stick them together”.

Let’s take our number 38, it has the following representation:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 53



2D Game Development: From Zero To Hero

100 110bin

100bin converts to 4oct, while 110bin converts to 6oct. If we stick them together we obtain the final result: 46oct.

4.1.4 Gray Code

Advanced Wizardry!

Gray code isn’t really used in game development, but it will be briefly explained here

since it will be used in Karnaugh Maps

Gray code (sometimes known as “reflected binary code”) is a particular ordering of the binary system where two

successive values differ by only one bit.

Gray code is used in many fields, from Digital (and cable) TV (for error-correction) to analog to digital conversion. In

this book we will use it as a representation inside Karnaugh Maps.

Here is a simple representation of the first 10 numbers in decimal, binary and gray code:

Decimal Binary Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

4.2 Basics of Logic

If we want our algorithms to be smart enough to be useful, we have to deal with conditionals. That’s where logic

comes in. In this section we will take a quick look at truth tables as well as logic operations.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 54



2D Game Development: From Zero To Hero

4.2.1 Truth tables

Truth tables are used to represent the output of a logic operation. It represents the inputs on the left side, while on

the right side the result is shown.

Truth tables in this book will have the following look:

A B f

0 0 0

0 1 0

1 0 1

1 1 0

4.2.2 Common operators

After we distinguish “true” (1) from “false” (0), we will need to start mixing and matching them (similarly to what

we do with numbers). That’s where operators come into play: they are a bit different than what we’re used to in

arithmetics, but they are quite intuitive.

4.2.2.1 AND

The “AND” operator is a binary operator that outputs 1 when both inputs are 1. Here is its truth table:

A B AND

0 0 0

0 1 0

1 0 0

1 1 1

This operator is used to express conditionals where you want two conditions to be true at the same time.

4.2.2.2 OR

The “OR” operator (sometimes called “inclusive or”, as opposed to the XOR operator) is a binary operator that

outputs 1 when either of the inputs is 1, including the case when both are 1. Here is its truth table:

A B OR

0 0 0

0 1 1

1 0 1

4 SOME COMPUTER SCIENCE FUNDAMENTALS 55



2D Game Development: From Zero To Hero

A B OR

1 1 1

This operator is used to express conditionals where you want at least one condition to be true.

4.2.2.3 NOT

The “NOT” operator is a unary operator that takes a single input and “inverts” it. That means that if the input is 1,

the “NOT” operator will output 0, if the input is 0 the “NOT” operator will output 1 instead.

Here is its truth table:

A NOT

0 1

1 0

4.2.2.4 XOR

The “XOR” operator (called “exclusive or”) is an operator that takes two input and outputs 1 when only one of the

two inputs is 1. If both inputs have the value 1, the “XOR” operator will output 0.

Here is its truth table:

A B XOR

0 0 0

0 1 1

1 0 1

1 1 0

This operator is used when you want to express conditionals where only one of the two inputs is true.

4.2.3 Logic operations vs bitwise operations

Advanced Wizardry!

The confines between logic operations and bitwise operations can get blurry. This

section introduces bitwise operations and alternative representations of data as a way

to fit more data in less space. Feel free to skim over this section.

So far we’ve seen operations that work on single binary digits, which can be seen as the numeric representation of

logical statements (0 meaning “false” and 1 meaning “true”). These are logic operations.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 56



2D Game Development: From Zero To Hero

Such operations can be applied on a bit-by-bit basis to groups of bits, that’s when we talk about about “bitwise

operations”.

0110 0010 AND

0101 1010

0100 0010

As you can see the bitwise AND operation takes each bit of the two bytes and does an “AND” operation on each one

of them.

4.2.3.1 Packing more information with less

Let’s imagine the following situation: we have a structure that represents a tile in a maze. We want to efficiently

store whether each side of a certain tile has a wall.

This can be solved by using a 4-bit positive integer and having each bit represent a side of the tile: if that bit is 1,

there is a wall, 0 otherwise.

After creating a convention, we can start storing data. For instance we can have the bits representing walls starting

from top, going clockwise.

xxx1

xx1x

x1xx

1xxx 1111

xxx1

xx1x

x0xx

1xxx 1011

xxx1

xx0x

x0xx

1xxx 1001

xxx1

xx0x

x1xx

0xxx 0101

Figure 23: How we can pack wall information with a 4-bit integer

This convention could be summarized as follows:

• 0001 represents a “top wall”;

• 0010 represents a “right wall”;

• 0100 represents a “bottom wall”;

• 1000 represents a “left wall”.

This means that 0110 represents a tile having two walls: on the right and bottom side (this is the integer number 6,

by the way). If we wanted to check if a certain tile has a wall, we would just need to AND it (bitwise) with the number

that represents such wall.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 57



2D Game Development: From Zero To Hero

If the result of such operation is not zero, the wall we searched for is in our tile. Continuing with our example, if we

test for a right wall we will obtain zero:

0110 AND

0001

0000

But if we test for a bottom wall, we will obtain something that is not zero:

0110 AND

0100

0100

4.2.4 De Morgan’s Laws and Conditional Expressions

De Morgan’s laws are fundamental in computer science as well as in any subject that involves propositional logic.

We will take a quick look at the strictly coding-related meaning.

De Morgan’s laws can be written as:

not (A and B) = not A or not B

not (A or B) = not A and not B

In symbols:

(A ∧B) = Ā ∨ B̄

(A ∨B) = Ā ∧ B̄

These laws allow us to express our own conditionals in different ways, allowing for more readability and maybe avoid

some boolean manipulation that can hinder the performance of our game.

4.3 Algorithms

When you talk about computer science, you always hear about algorithms: what is an algorithm?

An algorithm can be informally defined as a finite sequence (as in “not infinite”) of instructions that are followed to

solve certain problems.

There are numerous examples of algorithms, among them we can find:

• Finding the Greatest Common Divisor (GCD) of two numbers;

• Finding the largest number in a list;

4 SOME COMPUTER SCIENCE FUNDAMENTALS 58



2D Game Development: From Zero To Hero

• Calculating the nth Fibonacci number;

• …

Algorithms are usually represented in flow charts, or it’s more modern counterpart: the UML activity diagram. Some-

times algorithms can be represented in “plain language” (in that case we may end up talking about “pseudocode”)

or in a programming language.

4.4 Recursion

Starting from the (arguably hard) theme of recursion may seem weird, but it is important to understand recursion

as soon as possible so we can make the best use of it.

There is a joke I like telling around about recursion:

To understand recursion, you must first understand recursion.

What is recursion? Recursion is the usage of a function that calls itself.

Your first question will probably be: wouldn’t that make the program lock up forever in some kind of loop? It may.

But if you’re careful, recursion is an amazing tool that allows you to earn a lot of clarity and brevity.

Let’s imagine a simple algorithm: we want to make our program count backwards from a number n to 0. In a simple

“loop” fashion, we may write the following:

Listing 6: Counting from n to 0 using a loop

1 function count_backwards( in t n){

2 // Condition for the loop

3 while (n != 0){

4 // The function body

5 print(n);

6 // We update the condition to count down

7 n = n - 1;

8 }

9 }

Pretty simple, right? A real-world example would be counting back from 10 to 0: we print 10, we subtract 1 to get

9, we print 9, subtract 1 to get 8, …

Let’s turn our thinking around for a second. We can see counting back from to 10 to 0 like this: we print 10 and then

we count backwards from 9. Counting backwards from 9 would just mean printing 9 and then counting back from 8,

etc…

We just turned our simple loop into a recursive function:

Listing 7: Counting from n to 0 using recursion

1 function count_backwards( in t n){

4 SOME COMPUTER SCIENCE FUNDAMENTALS 59



2D Game Development: From Zero To Hero

2 // Stop condition

3 i f (n == 0){

4 // If we don't do this , we won't print 0

5 print(n);

6 return;

7 }

8 // Procedure

9 print(n);

10 // Recursive call

11 count_backwards(n-1);

12 }

Recursive functions have three main components:

• A base case (sometimes called a “stop condition”): this allows the function to stop calling itself when a certain

condition is reached;

• A procedure that elaborates on data or simply does something (in our example, it just prints the number);

• A recursive call to the same function we are writing, the call is done in a way that every call gets closer to

the “stop condition”. It can be done by calling the function on a subset of its argument (if it is a list), until the

list has only 1 item or on a smaller number (if the function argument is a number instead).

Recursion can be classified in many ways:

• By the number of recursive calls: single vs multiple recursion;

• By how the recursive call is made: direct (a function calls itself directly) vs indirect (a function A is called

by another function B, which in turn is called by function A)

• By the position of the recursive call: head vs tail recursion.

I want to underline the last distinction: what we’ve seen in the previous listing is called “tail recursion”: the recursive

call is done after everything else (the procedure).

Head recursion is instead done when the recursive call is done before the procedure starts, so we can transform our

“count down” function to a “count up” just by switching from “tail” to “head” recursion and adding a print statement.

Listing 8: Counting from 0 to n using head recursion

1 function count_forwards( in t n){

2 // Stop condition

3 i f (n == 0){

4 // If we don't do this , we won't print 0

5 print(n);

6 return;

7 }

8 // Recursive call

9 count_forwards(n-1);

10 // Procedure

11 print(n);

12 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 60



2D Game Development: From Zero To Hero

4.5 Programming Languages

Programming languages are a programmer’s way to talk to a computer (or a console): they are a way to make an

electronic apparatus do something (without involving analogue electronics).

4.5.1 Classifying programming languages

Programming languages can be distinguished by many traits, it is important to know such differences, even though

you may have already chosen your programming language.

4.5.1.1 By how they build

The way that a programming language gets you from code to “working product” can heavily influence both the final

product as well as the speed of development.

4.5.1.1.1 Compiled Languages

Compiled languages need to go through a building process before it is possible for the product to be run anywhere.

This has some advantages, as well as some disadvantages.

Figure 24: Example of a compiler output (G++)

Among the disadvantages we have that the final product is usually non-portable, that means it cannot be run any-

where besides the machine it was compiled for. This means that you will have to create separate builds for each

console, as well as different builds for each operating system.

Another disadvantage can be development speed: before you can test anything your game needs to be rebuilt. Some-

times the rebuild process can be quick (thanks to some techniques that avoid building things that didn’t change),

sometimes it can be long.

A very strong advantage of compiled languages is speed. Being essentially compiled to machine code, compiled

languages have an easier time squeezing every last drop of performance from the platform you’re building for. In

addition, some languages can use features to physically remove unused code from the build: this way release builds

can be much faster than debug ones, because the debug code is physically removed.

Among compiled languages we can find C and C++, as well as Rust and Go.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 61



2D Game Development: From Zero To Hero

4.5.1.1.2 Interpreted Languages

Interpreted languages, in their strictest sense, are at the other side of the spectrum: the program is not compiled

ahead of time but instead the source code is fed into an interpreter, which executes each row of instructions, one

after the other.

Most interpreted languages feature an interactive REPL[g] (read-eval-print loop) which allows to test code in real

time.

Figure 25: Python’s REPL Shell

They have the disadvantage of being usually slower than compiled languages and it’s not easy to create builds

that physically remove unused (debug) code without having to modify the sources manually. Also each console or

operating system will need to have the interpreter installed, which may be an issue.

The advantage is in development speed: you can edit the source code and immediately run the interpreter to see

the result, without having to wait for a new build to complete. Another advantage is portability: you don’t need to

create a new build for every system you want to run your game in, as long as an interpreter is available your game

will run.

An example of a purely interpreted language is BASIC.

4.5.1.1.3 Hybrid Approaches

In any project, the ability to code quickly is as important as the performance of the final product: there is a thin

balance to strike between “having a product with good performance” and “having a product that is released when

needed”. If your product releases too late, it doesn’t matter how performing it is, the market will have chosen

another product. If your product releases early but it underperforms, it will be replaced by better products.

Thus some hybrid approaches have been invented: one of these is, for instance, bytecode-compiled languages.

Bytecode-compiled languages (sometimes called “Languages with intermediate representation”) are something that

is not quite compiled, but it’s not precisely interpreted either: the code is converted into bytecode, which is then

fed to the interpreter (or “virtual machine”) to run.

Being a representation that is “closer to the hardware” than the original source code, there is a gain in performance,

while keeping the flexibility of interpreted code.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 62



2D Game Development: From Zero To Hero

Random Trivia!

Some programming languages, like Haskell and Vala use the C programming language

as an intermediate language, since C was meant to be an abstraction of the assembly

language.

Other approaches include Just-In-Time compiling, which trades off some longer starting times (sometimes called

“warm-up times”) for better overall performance.

Among the bytecode-compiled languages we can find Java and Python, while Lua can be considered a Just-In-Time

Compiled language (thanks to LuaJIT).

4.5.1.2 By Paradigm

A programming paradigm is how the programming language lets you program. There is not a single, definitive way

to code, thus programming languages can be distinguished by their paradigm.

4.5.1.2.1 Imperative Languages

Imperative languages are probably the most spread in modern programming: they make use of “orders” (called

“statements”) to change the status of the program.

This paradigm makes use of variables, statements, subroutines to make the program look like a set of instructions,

a recipe, to make the program do what it needs to do (an algorithm).

Imperative languages include C, COBOL, Basic and Fortran.

4.5.1.2.2 Functional Languages

Functional languages make programs work by applying and composing functions (in the mathematical sense). Func-

tions can be bound to variables and chained together (composed) to reach the result.

Functional languages include Haskell, Common Lisp and Scheme.

4.5.1.2.3 Multi-paradigm Languages

Many programming languages tend to “meld together” many programming paradigms, allowing (for instance) for

functional style programming in imperative languages.

This means that functions can be bound to variables and passed around as any other object, they can be composed

to reach the result if the programmer decides to do so (for instance for readability).

Multi-paradigm languages include Python, Lua and Go.

4.5.1.3 By the way types are determined

4 SOME COMPUTER SCIENCE FUNDAMENTALS 63



2D Game Development: From Zero To Hero

Sometimes underrated, how types are evaluated can completely change the way you program your game. Not

knowing precisely how your language of choice treats types can lead to hard-to-debug issues.

4.5.1.3.1 Static Typing

Statically typed languages have their types decided ahead of time (usually when the program is compiled) and

usually they cannot be changed.

This means that you have to have full awareness of which types will be used while writing your game. Which can be

difficult at times.

Statically-typed languages include C, C++ and C#, as well as Java.

4.5.1.3.2 Dynamic Typing

Dynamically typed languages have their types decided at runtime. This allows for simpler syntax, but at the cost of

lower performance, due to the fact that types are determined and verified at runtime.

Dynamically-typed languages include JavaScript and Ruby.

4.5.1.3.3 Duck Typing

Duck typing is probably the most misunderstood typing system. It can be described by the following sentence:

If it walks like a duck and it quacks like a duck, then it must be a duck.

This means that types are inferred by their behaviour (their capabilities), thus creating a series of -like objects that

behave more or less the same. This means that types can make use of the iteration capabilities of the language as

long as they implement some basic methods that allow iteration (like nextElement() and length()).

This means that we have “file-like” objects, which behave like files, are used like files, but not necessarily have

a counterpart in mass storage (they could be in-memory files), or “iterables” (sometimes called “list-like”) which

behave like lists of items, but may actually be something else (for instance strings could be seen as a “list of letters”).

In the end, in duck typing, interfaces are treated as some kind of “informal protocol” that tells the language how

to use an object. The “protocol” doesn’t even need to be implemented fully: if you have a “file-like” object that

implements only the reading method, you can still use it in the same way you’d use a file, as long as you don’t try

to write to it.

Duck Typing is used in the Python programming language.

4.5.1.4 By the “strength” of typing

How types are treated after each variable is instantiated can be the source of a lot of headaches while coding, thus

it is paramount to be aware of how strong your preferred language’s typing system is.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 64



2D Game Development: From Zero To Hero

4.5.1.4.1 Strong Typing

Strongly typed languages don’t allow one type to be treated like it was another type without an explicit conversion

(usually called “cast”). This prevents unforeseen automatic type conversions that may lead to bugs and faults being

undetected at compile time or runtime.

Some examples of strongly typed languages are C++, C#, Python and Java.

4.5.1.4.2 Weak Typing

Weak typed languages allow one type to be treated like another without explicit conversion. This may make the

syntax simpler, but may be source of unforeseen bugs.

For instance a string may be treated as it was a number, this means that in some languages (where the operator

+ means both “addition between numbers” and “joining strings together”) you may find that a result is a sum of

numbers instead of two strings joined together.

An example of a weakly typed language is JavaScript.

Random Trivia!

What about the good old C language? C has strong typing for the great majority of the

time, unless we consider the void* generic pointer. This kind of pointer can be used in

other pointer variables without an explicit cast.

4.5.1.5 By memory management

Another way to classify programming languages is how you can (or have to) manage your memory.

4.5.1.5.1 Languages without Garbage Collection

Some programming languages allow you to play with your system’s memory as you wish: they give you all the tools

(pointers, references, …) to manually allocate and free memory.

This comes with its advantages and drawbacks: higher performance is surely a big advantage. A huge disadvan-

tage is the fact that memory management is completely manual: dangling pointers and unreachable memory are

commonplace, because there is nothing to clear after you.

Non Garbage-collected languages include C and C++.

4.5.1.5.2 Garbage-collected Languages

Some other languages prefer taking away part of the control on memory to help avoiding the problems that non

Garbage-collected languages bring: there is something that cleans after you, which is the Garbage Collector.

The big disadvantage of this approach is that the garbage collector needs reference counting, CPU cycles to run,

which means that the whole program runs slower.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 65



2D Game Development: From Zero To Hero

Garbage collected languages include Java and Python.

4.5.2 Languages available for this book

Here is a quick rundown of how the languages used in the various editions of this book (excluding “pseudocode”,

which is not really a programming language) are classified.

• C++, a compiled programming language with strong static typing. It is multi-paradigm (although it was born

as an imperative language) and has no garbage collector.

• JavaScript, an interpreted language (although some engines support Just-In-Time compiling), with weak dy-

namic typing that supports some duck typing principles. It is multi-paradigm and features a garbage collector.

• Lua, a bytecode-compiled (or Just-In-Time compiled) language, with strong dynamic typing that supports

some duck typing principles. It is multi-paradigm and garbage-collected.

• Python, a bytecode-compiled language, with strong duck typing. It is multi-paradigm and garbage-collected.

4.6 Computers are (not) precise

There are many differences between humans and computers, among those there is one that will keep haunting us

in our journey: humans make calculations in “base 10” (decimal), computers make calculation in “base 2” (binary).

This requires computers to represent numbers differently, usually with the exponent+fraction representation (IEEE

754). Also computers have limited resources, thus have no concept of “infinity” (and conversely of “infinitesimal”).

Let’s assume a computer with a fixed (and reduced) precision and we execute the following C++ program (you can

just copy it verbatim):

Listing 9: A simple float precision test

1 #include <iostream >

2 #include <iomanip >

3

4 in t main ()

5 {

6 // This will reduce and fix the computer 's precision for this execution

7 std::cout << std:: setprecision (20);

8

9 f l oat d1(1.0);

10 std::cout << "This should be 1.0: " << d1 << std::endl;

11

12 f l oat d2(0.1);

13 std::cout << "This should be 0.1: " << d2 << std::endl;

14

15 f l oat d3 (0.1*0.1);

16 std::cout << "This should be 0.01:" << d3 << std::endl;

17

18 bool x (0.1 + 0.1 + 0.1 == 0.3);

19 std::cout << "This should be true (1): " << x << std::endl;

20

4 SOME COMPUTER SCIENCE FUNDAMENTALS 66



2D Game Development: From Zero To Hero

21 return 0;

22 }

We save it as “precision_test.cpp” and compile it with the following command line (on Linux):

1 g++ -Wall -Wextra -Werror -O0 precision_test.cpp -o precision_test.bin

This program will temporarily set a reduced precision in our number representation, and try to output the values of

the numbers 1, 0.1 and 0.12 = 0.01, let’s see the results:

Figure 26: Results of the simple float precision test

With the number 1 it’s all good, but… what is going on with 0.1? What is all that garbage? The number 0.01 is even

worse! That’s not even close! Why 0.1 + 0.1 + 0.1 comes out as not 0.3! What is maths anymore?

We have just met one of the (many) limitations of computers: computers cannot represent certain numbers without

“approximating”. Compilers and libraries exist to work around these issues, but we need to be ready to avoid

surprises.

Just to reiterate: this is not a problem of the single programming language, we can see that C++ is affected, but

also Python has the same issue:

Figure 27: Python 2 has the same issues with precision as C++

Figure 28: Python 3 doesn’t fare much better when it comes to precision

This is a computer issue in general: this may not be a huge problem for general use but, if we try to be too precise

with our calculations, this may come back to bite us.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 67



2D Game Development: From Zero To Hero

4.6.1 Catastrophic cancellation

Advanced Wizardry!

Catastrophic cancellation is one of the many pitfalls that you may encounter when

dealing with very small numbers. This doesn’t happen really often in the world of

game development, feel free to just skim through this mostly informative section.

With a name as dangerous-sounding as “catastrophic cancellation”, this sure looks like a dangerous phenomenon,

but it’s only dangerous if we don’t know what it is.

Catastrophic Cancellation (sometimes called “cancellation error”) is an event that may happen when subtracting

two (usually large) numbers that are close to each other in value.

Warning: from here on, in this section, there will be some technical language. I will try to make it as simple and

understandable as possible.

Let’s imagine a computer, such computer’s memory can handle at most 8 decimals while its A.L.U.[g] (the unit that

takes case of “doing maths”) can handle at most 16 decimal places.

Now let’s take two numbers:

x = 0.5654328749846 y = 0.5654328510104

When we transfer such numbers in our memory, the computer will approximate such numbers to fit in its memory

constraints. We’ll represent that by applying to each number a function fl() that we can read as “float representation

of this number”. So we’ll end up having:

fl(x) = 0.56543287 fl(y) = 0.56543285

This is generally called an “assignment error”, where during the assignment to a variable, a number loses part of its

information.

Let’s try an calculate how off those approximations are (by calculating the percent “relative error”), just to get an

idea of what we lost by just loading the numbers on our “fake computer”:

δx =
|x− fl(x)|

x
= 0.00000088%

δy =
|y − fl(y)|

y
= 0.00000017%

We can see that our approximations are very close to the numbers we want to calculate, now let’s calculate x− y.

Making things by hand we would have:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 68



2D Game Development: From Zero To Hero

x− y = 0.239772× 10−7

That’s a tiny number right there. Now let’s calculate fl(x) − fl(y), remembering that the A.L.U. will fill up to 16

decimals:

fl(x)− fl(y) = 0.5654328700000000− 0.5654328500000000 = 0.0000000200000000 = 0.2× 10−7

That doesn’t look so bad, unless we look at the “relative error”:

δ =
|0.239772× 10−7 − 0.2× 10−7|

0.239772× 10−7
= 16.6%

We are off by 16% of the total result, this is actually really bad.

What happened? If you look closely, the numbers are really close and even have 7 decimal digits in common, since

our computer canmemorize only 8 digits, the 9th to 13th decimal digits that looked so unimportant suddenly become

a huge part of the result (due to the subtraction) but are already lost.

4.7 Random Numbers are not really random

Computers are deterministic machines, given the same set of instructions and inputs, they will always return the

same output. Someone may think about “random number generators” and sure, those programs look like they spit

random numbers on your screen, but they actually don’t.

The most important number when generating random numbers is called seed and it’s the number used by the

generator to produce random numbers.

Let’s see an example of a random number generator in C++ (you can copy this program verbatim to try it):

Listing 10: A simple random number generation program

1 #include <iostream >

2 in t main(){

3 // First of all we get the seed

4 unsigned int seed;

5 std::cout << "Type the seed: " ;

6 std::cin >> seed;

7 // Now we seed the randomizer

8 srand(seed);

9 // Small presentation

10 std::cout << "This generator will now generate 10 random numbers" << std::endl;

11 // Output 10 random numbers

12 for ( in t i = 0; i < 10; ++i) {

13 std::cout << rand() << std::endl;

14 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 69



2D Game Development: From Zero To Hero

15 // Finish the program

16 return 0;

17 }

We can save this program as random_seed.cpp compile this program with the following command:

1 g++ -Wall -Wextra -Werror -O0 random_seed.cpp -o random_seed.bin

When we run the program, it will ask us to input a seed (which in our case is a number), after that it will just print

10 random numbers based on that seed. What would happen if we ran the program twice and use the same seed?

Figure 29: Running a random number generator with the same seed will always output the same numbers

Random numbers generated by computers are never truly random, that’s why they aremore properly called “pseudo-

random numbers”.

4.7.1 How to seed a random number generator

From what we have seen earlier, the seed of our random number generator is something we need to be mindful

about.

Choosing a static seed will make our game completely deterministic (if played in the same conditions), like we didn’t

use random numbers at all.

Some games use internal timers to see the random number generator, be it the time that the game has been running,

the time that has passed from the beginning of the mission or something similar. This allows you to have some kind

of “controlled RNG” that still has a bit of reproducibility.

Some choices expose the game to the possibility of RNG manipulation: where the player has partial or total control

over the random number generator, by performing specific actions at specific times, for instance.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 70



2D Game Development: From Zero To Hero

A very easy way to seed a generator is using the system time. Here’s a more advanced random number generator

that uses system time as its seed: if you run the program reasonably slow (not quicker than once a second) you will

see the numbers changing.

Listing 11: A random number generation program that uses system time as seed

1 #include <iostream >

2 #include <time.h>

3 in t main(){

4 // First of all we get the seed

5 unsigned int seed = time(nullptr);

6 // We print it for reference

7 std::cout << "The current seed is:" << seed << std::endl;

8 // Now we seed the randomizer

9 srand(seed);

10 // Small presentation

11 std::cout << "This generator will now generate 10 random numbers" << std::endl;

12 // Output 10 random numbers

13 for ( in t i = 0; i < 10; ++i) {

14 std::cout << rand() << std::endl;

15 }

16 // Finish the program

17 return 0;

18 }

We can save this program as rand.cpp compile this program with the following command:

1 g++ -Wall -Wextra -Werror -O0 rand.cpp -o rand.bin

This is the result of the program being run twice, one second apart:

Figure 30: Using the system time as RNG seed guarantees a degree of randomness

4 SOME COMPUTER SCIENCE FUNDAMENTALS 71



2D Game Development: From Zero To Hero

4.8 Estimating the complexity of algorithms

Now more than ever, you need to be able to be efficient. How do you know how “efficient” some piece of algorithm

is?

Seeing how much time it takes is not an option, computer specifications change from system to system, so we need

something that could be considered “cross-platform”.

This is where notations come into play.

There are 3 types of Asymptotic notation you should know: Ω, Θ and O.

Ω() represents a lower bound: this means that the algorithm will take at least as many cycles as specified.

O() represents an upper bound: it’s the most used notation and means that the algorithm will take at most as

many cycles as specified.

Θ() is a tight bound, used when the big-O notation and the big-Ω notation have the same value, which can help

define the behavior of the algorithm better.

We will now talk about the most common Big-O notations, from “most efficient” to “least efficient”.

Pitfall Warning!

Be mindful of one specific thing: these notations simply tie how the algorithm performs

in relation to how a certain variable grows (usually a dataset). If you know for certain

that a dataset stays relatively small, an algorithm with a “worse O() may not make a

huge difference or may even be more efficient.

4.8.1 O(1)

An algorithm that executes in O(1) is said to execute “in constant time”, which means that no matter how much

data is input in the algorithm, said algorithm will execute in the same time.

An example of a simple O(1) algorithm is an algorithm that, given a list of elements (with at least one element),

returns True if the first element is null.

Listing 12: Example of an O(1) algorithm

1 function isFirstElementNull(elements) -> bool{

2 i f (elements [0] i s nu l l ){

3 return True;

4 }else{

5 return False;

6 }

7 }

To be precise, this algorithm will perform both in O(1) and Ω(1), so it will perform in Θ(1).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 72



2D Game Development: From Zero To Hero

4.8.2 O(log(n))

An algorithm that executes in O(log(n)) is said to execute in “logarithmic time”, which means that given an input of

n items, the algorithm will execute log(n) cycles at most.

An example of a O(log(n)) algorithm is the so-called “binary search” on a ordered list of items.

Listing 13: Example of an O(log(n)) algorithm (Binary Search)

1 function binarySearch(item[] elements , item element_to_find) -> in t {

2 get middle_element;

3 i f (element_to_find == middle_element){

4 return the middle element position;

5 }else{

6 i f (element_to_find > middle_element){

7 perform binarySearch on the half of the list bigger than middle_element;

8 }else{

9 perform binarySearch on the half of the list smaller than middle_element;

10 }

11 }

12 return nul l ;

13 }

The best case is the time when you get the element to find to be the “middle element” of the list, in that case the

algorithm will execute in linear time: Θ(1) - You need at least one lookup (Ω(1)) and at most one lookup (O(1)).

In the worst case, the element is not present in the list, so you have to split the list and find the middle element until

you realize that you don’t have any more elements to iterate - this translates into a tight bound of Θ(log2n)

4.8.3 O(n)

An algorithm that executes in O(n) is said to execute in “linear time”, which means that given an input of n items,

the algorithm will execute at most n cycles.

An example of a simple O(n) algorithm is the one that prints a list, element by element.

Listing 14: Example of an O(n) algorithm (printing of a list)

1 function printList(items[] list){

2 for (each element in list){

3 print element;

4 }

5 }

It’s evident that this algorithm will call the print function n times, where n is the size of the list. This translates in a

Θ(n) complexity, which is both O(n) and Ω(n).

There is no “best” or “worst” case here, the algorithm prints n elements, no matter their order, the alignment of

planets and stars or the permission of its parents.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 73



2D Game Development: From Zero To Hero

4.8.4 O(n·log(n))

An algorithm that executes in O(n·log(n)) executes in a time slightly longer than a linear algorithm, but it’s still con-

sidered “ideal”. These algorithms are said to execute in “quasi-linear”, “log-linear”, “super-linear” or “linearithmic”

time.

Given an input of n elements, these algorithms execute n·log(n) steps, or cycles.

Some algorithms that run in O(n·log(n)) are:

• Quick Sort

• Heap Sort

• Fast Fourier Transforms (F.F.T.)

These algorithms are more complex than a simple example and would require a chapter on their own, so we’ll leave

examples aside for now.

4.8.5 O(n2)

Quadratic algorithms, as the algorithms that execute in O(n2) are called, are the door to the “danger zone”.

These algorithms can eat your CPU time quite quickly, although they can still be used for small computations some-

what efficiently.

Given an input of n elements, these algorithms execute n2 cycles, which means that given an input of 20 elements,

we’d find ourselves executing 400 cycles.

A simple example of a quadratic algorithm is “bubble sort”. A pseudo-code implementation is written here.

Listing 15: Example of an O(n²) algorithm (bubble sort)

1 function bubbleSort(items [] A){

2 in t n = length(A);

3 bool swapped = fa lse ;

4 do{

5 swapped = fa lse ;

6 for (i from 1 to n-1 inclusive){

7 i f (A[i-1] > A[i]){

8 swap( A[i-1], A[i] );

9 swapped = true;

10 }

11 }

12 } unt i l (not swapped);

13 }

Anything with complexity higher than O(n2) is usually considered unusable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 74



2D Game Development: From Zero To Hero

4.8.6 O(2n)

Algorithms that execute in exponential time are considered amajor code red, an will usually be replaced with heuristic

algorithms (which trade some precision for a lower complexity).

Given an input of 20 elements, an algorithm that executes in O(2n) will execute 220 = 1 048 576 cycles!

4.9 A primer on calculating the order of your algorithms

4.9.1 Some basics

When you estimate an algorithm, you usually want to calculate how it functions “in the worst case”, which usually

means that all loops get to their end (of the list or the counter) and everything takes the longest time possible.

Let’s start with an example:

Listing 16: A simple O(1) algorithm

1 // A simple O(1) algorithm: assigning to a variable

2 in t my_variable = 1;

This is a simple assignment operation, we are considering this instantaneous. So its complexity is O(1).

Now let’s see another algorithm:

Listing 17: A simple o(n) algorithm

1 // A simple O(n) algirithm: iterating through a list

2 for (item in my_list){

3 print(item);

4 }

In this case we are iterating through a list, we can see that as the list grows, the number of times we print an element

on our screen grows too. So if the list is n items long, we will have n calls to the output statement. This is an O(n)

complexity algorithm.

Now let’s take something we already saw and analyze it: the bubble sort algorithm:

Listing 18: The bubble sort algorithm, an O(n²) algorithm

1 function bubbleSort(items [] A){

2 in t n = length(A);

3 bool swapped = fa lse ;

4 do{

5 swapped = fa lse ;

6 for (i from 1 to n-1 inclusive){

7 i f (A[i-1] > A[i]){

8 swap( A[i-1], A[i] );

9 swapped = true;

10 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 75



2D Game Development: From Zero To Hero

11 }

12 } unt i l (not swapped);

13 }

This will require a small effort on our part: we can see that there are 2 nested loops in this code. What’s our worst

case? The answer is “The items are in the reverse order”.

When the items are in the reverse order, we will need to loop through the whole list to get the biggest item at the

end of the list, then another time to get the second-biggest item on the second-to-last place on the list… and so on.

So every time we bring an item to its place, we iterate through all the list once. This happens for each item.

So, in a list of length “n”, we bring the biggest item to its place “n times” and each “time” requires scanning “n”

elements: the result is n · n = n2.

The algorithm has time complexity of O(n2).

4.9.2 What happens when we have more than one big-O?

There are times when we have code that looks like the following:

Listing 19: A more complex algorithm to estimate

1 // -------------------------------------

2 in t n = length(A);

3 bool swapped = fa lse ;

4 do{

5 swapped = fa lse ;

6 for (i from 1 to n-1 inclusive){

7 i f (A[i-1] > A[i]){

8 swap( A[i-1], A[i] );

9 swapped = true;

10 }

11 }

12 } unt i l (not swapped);

13

14 // -------------------------------------

15

16 for (item in A){

17 print(item);

18 }

As we can see the first part is the bubble sort algorithm, followed by iterating through the (now ordered) list, to print

its values.

We can calculate the total estimate as O(n2) + O(n) and that would be absolutely correct, but as the list grows,

the growth rate of O(n) is very minor if compared to O(n2), as can be seen from the following figure:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 76



2D Game Development: From Zero To Hero

Figure 31: O(n) growth rate, compared to O(n²)

So we can drop the O(n) and consider the entire algorithm as an O(n2) algorithm in its entirety: this means that

when dealing with complexity estimates, you always keep the terms that have the largest “growth rate” (check the

Big-O estimates comparison section for more details).

4.9.3 A problem with asymptotic complexity

An important problem with asymptotic complexity is that it tends to hide coefficients and smaller terms, no matter

how important they may be.

Let’s take an example: we need to order a list of 500000 elements and we found two algorithms:

• Algorithm 1 works in O(n2)

• Algorithm 2 works in O(n), but its “non-simplified” complexity is O(1000000n)

Which one would be more efficient? From a first inspection it may seem surprising that until we reach 1 million

elements, algorithm 1 is better performing.

If we plot how the CPU cycles behave for each algorithm, we can see how the reality is different.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 77



2D Game Development: From Zero To Hero

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 0  200000  400000  600000  800000  1e+06  1.2e+06

1000000n

n²

Figure 32: When coefficients have important values, asymptotic complexity may trick us

4.9.4 What do we do with recursive algorithms?

When recursive algorithms are involved, things get a lot more complex, and they involve building recursion trees

and sometimes you’ll have to use the so-called “master theorem for divide-and-conquer recurrences”.

Such methods are outside the scope of this book as of now.

4.9.5 How do big-O estimates compare to each other?

Here we can see how big-O estimates compare to each other, graphically and how important it is to write not-

inefficient algorithms.

If we had to write it as an inequality, frommore to least efficient, we would have something like this (only considering

Big-O notation):

O(1) < O(log n) < O(n) < O(n · log n) < O(n2) < O(2n)

4 SOME COMPUTER SCIENCE FUNDAMENTALS 78



2D Game Development: From Zero To Hero

Figure 33: Big-O Estimates, plotted

There is a very specific reason why the O(2n) estimate is missing from the previous plot: we wouldn’t be able to

see anything worthwhile if it was included, as seen from the following plot:

Figure 34: How O(2n) overpowers lower complexities

[This section is a work in progress and it will be completed as soon as possible]

4.10 Simplifying your conditionals with Karnaugh Maps

Karnaughmaps are a useful tool to simplify boolean algebra expressions, as well as identifying and potentially solving

race conditions.

The output of a Karnaugh Map will always be an “OR of ANDs”.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 79



2D Game Development: From Zero To Hero

The best way to explain them is to give an example.

Let’s take the following truth table:

Table 23: The first truth table we’ll simplify with Karnaugh Maps

A B f

0 0 0

0 1 1

1 0 1

1 1 0

Said table can contain any number of variables (we’ll see how to implement those). To be precise, this table repre-

sents the formula A XOR B (XOR means ‘exclusive or’).

Let’s arrange it into a double-entry table, like this (Values of A are on top, values of B are on the left):

A

0 1

B
0 0 1

1 1 0

Figure 35: Karnaugh Map for A XOR B

Now we have to identify the biggest squares or rectangles that contain 2n elements equal to 1 so that we can cover

all the “1” values we have (they can overlap). In this case we’re unlucky as we have only two small rectangles that

contain one element each:

A

0 1

B
0 0 1

1 1 0

Figure 36: Karnaugh Map where the elements of the two “rectangles” have been marked green and red

In this case, we have the result we want with the following formula: f = (A ∧ B̄) ∨ (Ā ∧B)

Not an improvement at all, but that’s because the example is a really simple one.

4.10.1 “Don’t care”s

Karnaugh Maps show more usefulness when we have the so-called “don’t care”s, situations where we don’t care

(wow!) about the result. Here’s an example.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 80



2D Game Development: From Zero To Hero

Table 24: Truth table with a “don’t care” value

A B f

0 0 0

0 1 1

1 0 1

1 1 x

Putting this truth table into a Karnaugh map we get something a bit more interesting:

A

0 1

B
0 0 1

1 1 x

Figure 37: Karnaugh Map with a “don’t care” value

Now we have a value that behaves a bit like a “wild card”, that means we can pretend it’s either a 0 or 1, depending

on the situation. In this example we’ll pretend it’s a 1, because it’s the value that will give us the biggest “rectangles”.

A

0 1

B
0 0 1

1 1 1

Figure 38: Karnaugh Map where we pretend the “don’t care” value is equal to 1

Now we can find two two-elements rectangles in this map.

The first is the following one:

A

0 1

B
0 0 1

1 1 1

Figure 39: First Rectangle in the Karnaugh map

In this case, we can see that the result is 1 when B = 1, no matter the value of A. We’ll keep this in mind.

The second rectangle is:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 81



2D Game Development: From Zero To Hero

A

0 1

B
0 0 1

1 1 1

Figure 40: Second Rectangle in the Karnaugh map

In this case, we can see that the result is 1 when A = 1, no matter the value of B.

This translates into a formula of: f = (A) ∨ (B), considering that we don’t care about the result that comes out

when A = 1 and B = 1.

Note!

If instead of 1, we ended up choosing 0 for our “don’t care”, we would have obtained

f = (A∧ B̄)∨ (Ā∧B) (the extended form of AXOR B, which we saw earlier). For

our needs, this would have been a good solution too.

4.10.2 A more complex map

When we have more variables, like the following truth table:

A B C D f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 x

4 SOME COMPUTER SCIENCE FUNDAMENTALS 82



2D Game Development: From Zero To Hero

Now we’ll have to group up our variables and put them in a Karnaugh Map using Gray Code, practically each row or

column differs from the adjacent ones by only one bit.

The resulting Karnaugh map is the following (AB on columns, CD on rows):

AB

00 01 11 10

CD

00 0 0 1 1

01 0 0 1 1

11 0 0 x 1

10 0 1 1 1

Figure 41: A more complex Karnaugh map

We can see two rectangles that contain 2n items, one with 2 items, the other with 8, considering the only “don’t

care” value as 1.

AB

00 01 11 10

CD

00 0 0 1 1

01 0 0 1 1

11 0 0 x 1

10 0 1 1 1

Figure 42: First rectangle of the more complex Karnaugh map

In this first rectangle, we can see that the values of C and D don’t matter towards the result, as well as the value of

B. The only variable that gives the result on this rectangle is A = 1. We’ll keep that in mind

Let’s see the second rectangle:

AB

00 01 11 10

CD

00 0 0 1 1

01 0 0 1 1

11 0 0 x 1

10 0 1 1 1

Figure 43: Second rectangle of the more complex Karnaugh map

In this case A doesn’t give any contribution to the result, but at the same time we need B = 1, C = 1 and D = 0

to get the wanted result.

D = 0 translates into D̄ = 1, which brings the formula to: f = A ∨ (B ∧ C ∧ D̄).

If we didn’t have that “don’t care” value, everything would have been more complex.

4.10.3 Guided Exercise

Let’s remove the “don’t care” value and have the following truth table:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 83



2D Game Development: From Zero To Hero

A B C D f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Let’s put it into a Karnaugh Map:

AB

00 01 11 10

CD

00 0 0 1 1

01 0 0 1 1

11 0 0 0 1

10 0 1 1 1

Figure 44: Guided Exercise: Karnaugh Map (1/4)

Find the biggest rectangles:

AB

00 01 11 10

CD

00 0 0 1 1

01 0 0 1 1

11 0 0 0 1

10 0 1 1 1

Figure 45: Guided Exercise: Karnaugh Map (2/4)

4 SOME COMPUTER SCIENCE FUNDAMENTALS 84



2D Game Development: From Zero To Hero

AB

00 01 11 10

CD

00 0 0 1 1

01 0 0 1 1

11 0 0 0 1

10 0 1 1 1

Figure 46: Guided Exercise: Karnaugh Map (3/4)

AB

00 01 11 10

CD

00 0 0 1 1

01 0 0 1 1

11 0 0 0 1

10 0 1 1 1

Figure 47: Guided Exercise: Karnaugh Map (4/4)

Extract the result: f = (A ∧ C̄) ∨ (A ∧ B̄) ∨ (B ∧ C ∧ D̄)

4.11 Object Oriented Programming

4.11.1 Introduction

One of the biggest programming paradigms in use is surely the “Object Oriented Programming” (from now on:

“O.O.P.”) paradigm. The fundamental unit of a program, in this paradigm is the Object. This paradigm allows to

structure your code in a more modular and re-usable way, as well as implementing abstractions, allowing for more

solid code and making it possible for other code to make use of your own code without needing to know any details

besides its Interface.

4.11.2 Objects

Objects are the fundamental unit in O.O.P., objects are essentially a collection of data and functions. Objects are

actually the physical instantiation of what is called a “Class”.

To simplify the concept: a “Class” is a house blueprint, an “Object” is the house itself.

Objects contain data and functions, for the sake of precision, we will use their technical names:

• Functions that are part of an object are called methods and they can be classified as:

– Instance Methods when they act on a single object instance;

– Static Methods when they don’t (usually they’re utility functions), that also means that these methods

belong to the Class itself and not to its instance.

• Each piece of data contained in the class is called a Field and they can be classified as:

– Instance Fields when they’re part of the instance and can change from instance to instance;

– Static Fields when they’re part of the class but don’t change between instances (Caution: it does not

mean they cannot change, in that case the change will snowball into all the instances).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 85



2D Game Development: From Zero To Hero

4.11.3 Abstraction and Interfaces

Abstraction is a fundamental point in O.O.P., and it is usually taken care of via so-called Interfaces.

Interfaces are the front-end that an object offers to other objects so they can interact.

As an example: the interface to your PC is given by Keyboard, Mouse and Screen - you don’t need to know how

the single electron travels through the circuits to be able to use a computer; same goes for a class that offers a

well-abstracted interface.

Being able to abstract a concept, removing the necessity to know the internal workings of the code that is used,

is fundamental to be able to write solid and maintainable code, because implementations change, but interfaces

rarely do.

Making classes work together with interfaces allows you to modify and optimize your code without having each edit

snowball into a flurry of compiler (or interpreter) errors. For instance: a rectangle class exposes in its interface a

method getArea() - you don’t need to know how to calculate the area, you just call that method and know it will return

the area of the rectangle.

The concept of keeping the internal workings of a class is called Information Hiding.

4.11.4 Inheritance and Polymorphism

One of the biggest aspects of O.O.P. is inheritance: you can create other classes based on a so-called “base class”,

allowing for extensibility of your software.

You can create a “Person” class, with a name, surname and age as fields, and by inheriting from the “Person” class

you can create a “Student” class, which has all the fields from Person, plus the “clubs” and “grade” fields.

This allows to create a “tree of classes” that represents part of your software.

From inheritance, O.O.P. presents a concept called Polymorphism (From “Poly” - Many, “Morph” - Shape), where

you can use the base class to represent the entire class tree, allowing for substitution.

In our “Person-Student” example, you could use a pointer to either a Person or a Student for the sake of getting their

first name.

In some languages it is possible for an object to inherit frommultiple other objects, this is called “Multiple Inheritance”

4.11.5 Mixins

Mixins are classes that contain certain methods that are made to be used by other classes. We can see mixins as

some kind of interface with methods already implemented.

Mixins encourage the reuse of code (since the common functionalities get separated into their own classes), allowing

for some interesting mechanisms and enforcing the Dependency Inversion principle.

Many times, Mixins are described as “included” rather than “inherited”, due to their nature.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 86



2D Game Development: From Zero To Hero

Random Trivia!

The python web framework Django makes heavy use of mixins in its class-based views:

you can create a standard “View” (representing a web page, for instance), and then add

login protection (via LoginRequiredMixin) or permissions (via PermissionRequiredMixin).

This is all done using Python’s multiple inheritance.

A code example of mixins is beyond the scope of this book, since each language has its own way of implementing

mixins, some easy (like Python), other a bit more complex (like C++, see “Curiously Recurring Template Patterns”,

or C.R.T.P.).

4.11.6 The Diamond Problem

Usually when you call a method that is not present in the object itself, the program will look through the object’s

parents for the method to execute. This usually works well when there is no ambiguity. What if there is ambiguity

instead?

When multiple inheritance is involved, there is a serious possibility of a situation similar to the following

A

doStuff()

B

doStuff()

C

doStuff()

D

Figure 48: Example of a diamond problem

In this example, class A implements a method dostuff() that is overrode by both classes B and C (which inherit from

A): now class D inherits from both B and C but does not override dostuff(), which one will be chosen?

This is the reason many languages do not implement multiple inheritance between classes (like Java, which allows

multiple inheritance only between interfaces), other implement the so-called “virtual inheritance” (C++) and others

again use an ordered list to solve the problem (Python).

This is not something you usually need to worry about, but you may want to be careful when you structure your

classes to avoid “diamond problems”, so to avoid headaches.

4.11.7 Composition

As opposed to inheritance’s “IS-A” relationship, composition makes use of a “HAS-A” type of relationship.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 87



2D Game Development: From Zero To Hero

Composition allows to define objects by declaring which properties they have: a player character can be a sprite

with a “Movable” component, or a box could have a “RigidBody” component.

This way we can create new objects by reusing basic components, making maintenance easier as well as saving

lines of code, avoiding “the diamond problem” and reducing coupling.

4.11.8 Composition vs. Inheritance

Let’s be clear right from the get go: there is no “silver bullet” here. Composition and inheritance target different

problems (IS-A vs. HAS-A relationships). Inheritance binds classes closely, while composition tends to induce less

coupling (we’ll talk about coupling in a second).

Let’s make an example of inheritance: we have a “Shape” base class, from where we create two new classes:

Rectangle and Circle. For the purposes of our usage (which will be getting perimeter and area), Rectangle IS-A

Shape, as well as Circle IS-A Shape.

Listing 20: An example of inheritance: Shapes

1 abstract class Shape{

2 /*

3 * An abstract shape class

4 */

5 // Abstract functions that will be overridden by subclasses

6 abstract function area() -> f l oat ;

7 abstract function perimeter () -> f l oat ;

8 }

9 };

10

11 class Rectangle inher i ts from Shape{

12 // A simple rectangle class

13 f l oat width;

14 f l oat height;

15

16 constructor( f l oat w, f l oat h){

17 this.width = w;

18 this.height = h;

19 }

20

21 function area() -> f l oat {

22 // Returns the Area of the rectangle

23 return this.width * this.height;

24 }

25

26 function perimeter () -> f l oat {

27 // Returns the Perimeter of the rectangle

28 return 2 * (this.width + this.height);

29 }

30 }

31

32 class Circle inher i ts from Shape{

4 SOME COMPUTER SCIENCE FUNDAMENTALS 88



2D Game Development: From Zero To Hero

33 // A simple circle class

34 f l oat radius;

35

36 constructor( f l oat r){

37 this.radius = r;

38 }

39

40 function area() -> f l oat {

41 // Returns the Area of the circle

42 return 3.1415 * 3.1415 * this.radius;

43 }

44

45 function perimeter () -> f l oat {

46 // Returns the circumference of the circle

47 return 2 * 3.1415 * this.radius;

48 }

49 }

Let’s continue with another example: we have a Coffee machine, such coffee machine HAS-A grinder, as well as

brewing unit. We can express such relationships with composition and build our coffee machine from our compo-

nents.

Listing 21: An example of inheritance: A coffee machine

1 class Grinder{

2 // A simple coffee grinder component

3 function grind(){

4 // Pretend to grind some coffee

5 print("Grinding coffee");

6 }

7 }

8

9 class BrewingUnit{

10 // A simple brewing unit component

11 function brew(){

12 // Pretend to brew a good coffee

13 print("Brewing your coffee");

14 }

15 }

16

17 class CoffeeMachine{

18 // A simple coffee machine , has a grinder and a brewing unit

19 Grinder grinder = new Grinder ();

20 BrewingUnit brewer = new BrewingUnit ();

21

22 function make_coffee (){

23 // Uses the brewing component and the grinder to make some fresh coffee

24 this.grinder.grind();

25 this.brewer.brew();

26 print("Here's your fresh coffee!");

4 SOME COMPUTER SCIENCE FUNDAMENTALS 89



2D Game Development: From Zero To Hero

27 }

28 }

4.11.9 “Composition over Inheritance” design

Often cited in programming, the “composition over inheritance” design states that code reuse and polymorphism

should be achieved using composition as the preferred method, while leaving subclassing (inheritance) alone as

much as possible.

This allows for easier code reuse, as well as more flexibility and less coupling. Let’s make a simple example.

Note!

If you’re having trouble understanding the diagrams that follow, head to the Reading

UML Diagrams section for a full explanation on UML.

Let’s imagine a physical object that can be Visible/Invisible, Solid/NonSolid and Movable/Immovable. In UML, an

inheritance hierarchy would look something like this:

Object

input();
update(dt);
draw();
collide();

VisibleObject

draw();

InvisibleObject

draw();

CollidableObject

collide();

NonCollidableObject

collide();

MovableObject

update();

ImmovableObject

update();

Figure 49: How an object may look using inheritance

If we think of some objects, like a playable character, or a building, things get a lot more complicated: a playable

character is movable, solid and visible, while the building is not movable. Things can get ugly really fast.

Object

input();
update(dt);
draw();
collide();

VisibleObject

draw();

InvisibleObject

draw();

CollidableObject

collide();

NonCollidableObject

collide();

MovableObject

update();

ImmovableObject

update();

Building PlayableCharacter

Figure 50: How inheritance can get complicated quickly

This can lead to confusion, as well as the diamond problem.

Using composition, we can separate the behaviours into the “Visible”, “Updatable” and “Movable” components and

then use those as “reusable puzzle pieces” for our objects.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 90



2D Game Development: From Zero To Hero

Interfaces

Implementations

Objects

Updatable

update();

Visible

draw();

Collidable

collide();

VisibleObject

draw();

InvisibleObject

draw();

CollidableObject

collide();

NonCollidableObject

collide();

MovableObject

update();

ImmovableObject

update();

PlayableCharacter

visiblecomponent: Visible;
collidablecomponent: Collidable;
movablecomponent: Updatable;

update();
draw();
collide();

Building

visiblecomponent: Visible;
collidablecomponent: Collidable;
movablecomponent: Updatable;

update();
draw();
collide();

The fields will contain the following instances:
- visiblecomponent: VisibleObject
- collidablecomponent: CollidableObject
- movablecomponent: ImmovableObject

The fields will contain the following instances:
- visiblecomponent: VisibleObject
- collidablecomponent: CollidableObject
- movablecomponent: MovableObject

Figure 51: How components make things a bit simpler

4.11.10 Coupling

Coupling is a term used to define the phenomenon where an edit to some part of a software snowballs into a bunch

of edits in parts of the software that depend on the modified part, and the part that depend on the previously edited

dependency, etc…

The parts involved are defined as “coupled” because, even though they are separated, their maintenance very much

behaves like they were a single entity. This also means that the elements that are coupled are harder to reuse, since

they are so tightly related that they end up serving each other and nothing else.

Introducing unnecessary coupling in our software will come back to bite us in the future, affecting maintainability in

a very negative way, since any edit we make (for instance, to fix a bug) can potentially lead to the need to edit the

rest of the software (or game) we are writing.

Reducing coupling is done by reducing interdependence, coordination and information flow between elements of a

program.

Examples of coupling include:

• A module uses code of another module (this breaks the principle of information hiding[g]);

• Many modules access the same global data;

• A module controls the flow of another module (like passing a parameter that decides “what to do”);

• Subclassing.

This means that it’s in our best interest to reduce code coupling as much as possible, following the good principles

of “nutshell programming” and following the SOLID principles, shown next.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 91



2D Game Development: From Zero To Hero

Note!

We may be tempted to try and “remove coupling completely”, but that’s usually a

wasted effort. We want to reduce coupling as much as possible and instead improve

“cohesion”. Sometimes coupling is unavoidable (as in case of subclassing). Balance is

the key.

4.11.11 The DRY Principle

DRY is a mnemonic acronym that stands for “Don’t Repeat Yourself” and condenses in itself the principle of reducing

repetition inside a software, replacing it with abstractions and by normalizing data.

This allows for each piece of code (and knowledge, since the DRY principle applies to documentation too) to be

unambiguous, centralizing its responsibilities and avoiding repetition.

Violations of the DRY principle are called “WET” (Write Everything Twice) solutions, which base themselves on

repetition and give higher chances of mistakes and inconsistency.

4.11.12 SOLID Principles

SOLID is a mnemonic acronym that condenses five principles of good design, to make code and software that is

understandable, flexible and maintainable.

• Single Responsibility: Each class should have a single responsibility, it should take care of one part of

the software specification and each change to said specification should affect only said class. This means

you should avoid the so-called “God Classes”, classes that take care of too much, know too much about the

system and in a nutshell: have too much responsibility in your software.

• Open-closed Principle: Each software entity should be open to extension, but closed for modification. This

means that each class (for instance) should be extensible, either via inheritance or composition, but it should

not be possible to modify the class’s code. This is practically enforcing Information Hiding.

• Liskov Substitution Principle: Objects in a program should be replaceable with instances of their subtypes

and the correctness of the program should not be affected. This is the base of inheritance and polimorphism,

if by substituting a base class with one of its children (which should have a Child-is-a-Base relationship, for

instance “Circle is a shape”) the program is not correct anymore, either something is wrong with the program,

or the classes should not be in a “IS-A” relationship.

• Interface Segregation: Classes should provide many specific interfaces instead of one general-purpose

interface, this means that no client should depend on methods that it doesn’t use. This makes the software

easier to refactor and maintain, and reduces coupling.

• Dependency Inversion: Software components should depend on abstractions and not concretions. This is

another staple of nutshell programming and O.O.P. - Each class shouldmake use of some other class’s interface,

not its inner workings. This allows for maintainability and easier update and change of code, without having

the changes snowball into an Armageddon of errors.

[This section is a work in progress and it will be completed as soon as possible]

4 SOME COMPUTER SCIENCE FUNDAMENTALS 92



2D Game Development: From Zero To Hero

4.12 Designing entities as data

Sometimes it can be useful to design your entities as data, instead of making them into static objects that possibly

require a new release of your product.

Designing your objects as data allows you to use configuration files to create, configure, tinker and extend your

product, as well as allow for modifications by people who are fans of your game.

For instance, in a fantasy RPG you could have 3 types of enemies all defined as classes:

• Skeleton

• Zombie

• Ghost Swordsman

Which all have the same behavior but different animations and sprites.

These classes can inherit from an “entity” abstract class which defines the base behavior and then can be extended

to create each unique enemy.

Another idea could be designing an “entity” class that can be instantiated, and have a configuration file that defines

what each entity is and what its properties are.

An idea could be the following, using YAML:

Listing 22: Example of an entity declared as YAML data

1 entity:

2 name: skeleton

3 health: 10

4 damage_on_hit: 2.5

5 spritesheet: "./ skelly.png"

6 animations:

7 walking:

8 start_sprite: 4

9 frame_no: 4

10 duration: 0.2

11 attacking:

12 start_sprite: 9

13 frame_no: 2

14 duration: 0.1

Another often used alternative is JSON, which would look like this:

Listing 23: Example of an entity declared as JSON data

1 {

2 "entity ": {

3 "name": "skeleton",

4 "health ": 10,

5 "damage_on_hit ": 2.5,

4 SOME COMPUTER SCIENCE FUNDAMENTALS 93



2D Game Development: From Zero To Hero

6 "spritesheet ": "./ skelly.png",

7 "animations ":{

8 "walking ":{

9 "start_sprite ": 4,

10 "frame_no ": 4,

11 "duration ": 0.2

12 },

13 "attacking ":{

14 "start_sprite ": 9,

15 "frame_no ": 2,

16 "duration ": 0.1

17 }

18 }

19 }

20 }

With more complex building algorithms, it is possible to change behaviors and much more with just a configuration

file, and this gives itself well to rogue-like games, which random selection of enemies can benefit from an extension

of the enemy pool. In fact, it’s really easy to configure a new type of enemy and have it work inside the game without

recompiling anything.

This allows for more readable code and a higher extensibility.

4.13 Reading UML diagrams

UML (Universal Modeling Language) is a set of graphical tools that allow a team to better organize and plan a software

product. Diagrams are drawn in such a way to give the reader an overall assessment of the situation described while

being easy to read and understand.

In this chapter we will take a look at 4 diagrams used in UML:

• Use Case Diagrams

• Class Diagrams

• Activity Diagrams

• Sequence Diagrams

4.13.1 Use Case Diagrams

Use Case Diagrams are usually used in software engineering to gather requirements for the software that will come

to exist. In the world of game development, use case diagrams can prove useful to have an “outside view” of our

game, and understand how an user can interact with our game.

Here is an example of a use case diagram for a game:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 94



2D Game Development: From Zero To Hero

GameMenu

Start The Game

Open the Options Menu

Open the Credits Screen

Exit to Desktop

Remember to clear the menu stack!

Player

Figure 52: Example of a use case diagram

4.13.1.1 Actors

Actors are any entity that can interface with our system (in this case, our game) without being part of it. Actors can

both be human, machines or even other systems.

Actors are represented with a stick figure and can inherit from each other: this will create an “IS-A” relationship

between actors.

Authenticated User

Free User Power User

Ultimate User

Figure 53: Example of an actor hierarchy

In the previous example, we can see that a “Free User” is an “Authenticated User”, as well as a “Power User” (which

could be a paying user) is itself an “Authenticated User” while an “Ultimate User” (which could be a higher tier

of paying user) is a “Power User” (thus has all the “Power User” capabilities, plus some unique) and by transitive

property an “Authenticated User”.

As seen, inheritance between actors is represented with a solid line with a hollow closed arrow. Such arrow points

towards the “super-type” or “parent” from which the subject (or “sub-type”, or “child”) inherits.

This representation will come back in the UML language for other diagrams too.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 95



2D Game Development: From Zero To Hero

4.13.1.2 Use Cases

Use cases represent the functionalities that our system offers, and the relationships between them.

Use cases are represented with an ellipse with the name of the use case inside. Choosing the right name for a use

case is extremely important, since they will represent the functionality that will be developed in our game.

Start The Game

Figure 54: Example of a use case

4.13.1.2.1 Inheritance

As with many other elements used in UML, use cases can inherit from each other. Inheritance (also called “General-

ization”) is represented with a closed hollow arrow that points towards the parent use case.

Website

Search

Search By Name

Search By Category

Search By Tag

Player

Figure 55: Example of a use case hierarchy

4.13.1.2.2 Extensions

Use case extensions specify how and when optional behavior takes place. Extended use cases are meaningful

on their own and are independent from the extending use case, while the extending use case define the optional

behavior that may not have much sense by itself.

Extensions are represented via a dashed line with an open arrow on the end, labeled with the <<extend>> keyword,

pointing towards the extending use case.

System

Login Help on Login

User

«extend»

Figure 56: Example of a use case extension

4 SOME COMPUTER SCIENCE FUNDAMENTALS 96



2D Game Development: From Zero To Hero

4.13.1.2.3 Inclusions

Inclusions specify how the behavior of the included use case is inserted in the behavior of the including use case.

Inclusions are usually used to simplify large use cases by splitting them or extract common behaviors of two or more

use cases.

In this situation, the including use case is not complete by itself.

Inclusions are represented via a dashed line with an open arrow on the end, labeled with the <<include>> pointing

towards the included use case.

System

Deposit

Withdraw

Customer Authentication

User

«include»

«include»

Figure 57: Example of a use case inclusion

4.13.1.3 Notes

In use case diagrams, as well as in many other UML diagrams, notes are used to jot down conditions, comments and

everything useful to better understanding the diagram that cannot be conveyed through a well definite structure

inside of UML.

Notes are shaped like a sheet of paper with a folded corner and are usually connected to the diagram with a dashed

line. Each note can be connected to more than one piece of the diagram.

You can see a note at the beginning of this chapter, in the use case diagram explanation.

4.13.1.4 Sub-Use Cases

Use cases can be further detailed by creating sub-use cases, like the following example.

Checkout

Checkout

Payment

HelpCustomer

Clerk

«include»

«extends»

Figure 58: Example of a sub-use case

4.13.2 Class Diagrams

4.13.2.1 Classes

4 SOME COMPUTER SCIENCE FUNDAMENTALS 97



2D Game Development: From Zero To Hero

Class diagrams are used a step after analyzing your game, since they are used for planning classes. The central

element of a class diagram is the “class”, which is represented as follows:

ClassName

privateVariableType privateVariable

publicMethodName()
protectedMethodName()
privateMethodName()
publicStaticMethod()

AbstractClassName

publicAbstractMethodName()

Figure 59: Example of classes in UML

Classes are made up by a class name, which is shown on top of the class; abstract classes are shown with a name

in italics.

Public members are highlighted by a “+” symbol (or in our case, a green symbol) before their name, protected

members use a “#” symbol (or a yellow symbol) and private members use a “-” symbol.

Static members are shown with an underlined name, while abstract members are shown in italics.

4.13.2.2 Interfaces

Sometimes there is a need to convey the concept of “interface” inside a UML class diagram, that can easily be done

in 2 ways:

• By using the class construct, with the keyword (called “stereotype”) <<interface>> written on top of it;

• By using the “lollipop notation” (also called “interface realization”).

«interface»
SearchInterface

SearchProvider

Figure 60: Defining an interface in UML

SearchProvider

SearchInterface

Figure 61: Interface Realization in UML

4.13.2.3 Relationships between entities of the class diagram

Expressing only single classes on their own doesn’t give UML a lot of expressive power when it comes to planning

your games. Here we’ll take a quick look at the most used relationships between classes.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 98



2D Game Development: From Zero To Hero

Interface
Realization

Generalization/
Inheritance Association Dependency Aggregation Composition

Figure 62: Relationships between classes in an UML Diagram

4.13.2.3.1 Inheritance

Inheritance is represented via a hollow closed arrow head that points towards the base class (exactly like in Actor

inheritance), this means that the classes are in a “super-type and sub-type” relationship.

Person

name: string
age: int

Student

grades: list

getGPA()

Figure 63: Example of inheritance in UML class diagrams

In this example we say that “Student IS-A Person” and inherits all Person’s methods and fields.

4.13.2.3.2 Interface realization

Interface realization can be complex to understand at first, given its formal definition:

The interface realization relationship specifies that the realizing class must conform to the contract that the

provided interface specifies.

In short, it means that the class is implementing all the methods specified by the interface (thus “realizing” it, as in

making it real).

Interface

doStuff()

ConcreteClass

doStuff()

The "doStuff()" method is obligatorily
implemented, since the interface is
"a contract" over what the class shall do.

Figure 64: Example of interface realization in UML class diagram

4.13.2.3.3 Association

4 SOME COMPUTER SCIENCE FUNDAMENTALS 99



2D Game Development: From Zero To Hero

Association represents a static relationship between two classes. This is usually represented with a solid line with

an arrow. The arrow usually shows the reading order of the association, so if you see an “Author” class and a “Book”

class, the “wrote” association will be pointing from the “Author” to the “Book” class.

In case the relationship is bi-directional, the arrow points are omitted, leaving only a solid line between the two

classes.

Person

name: string
age: int

Magazine

title: string

subscriber
0..*

0..*

Figure 65: Example of association in UML class diagrams

An example of an association is the relationship between a “Person” and a “Magazine”, such relationship is the

“Subscription”. In this case the relationship is bi-directional, since a “Magazine” can be subscribed by many people,

but a single “Person” can subscribe to many “Magazine”s.

4.13.2.3.4 Aggregation and Composition

Aggregation is a special case of the association relationship, and represents a more specific case of it. Aggregation

is a variant of a “has-a” relationship and represents a part-whole relationship.

Aggregation is represented with a hollow diamond and a line that points to the contained class, classes involved in

an aggregation relationships do not have their life cycles dependent one another, that means that if the container

is destroyed, the contained objects will keep on living. An example could be a teacher and their students, if the

teacher dies the students will keep on living.

Student

name: string
age: int

Teacher

name: string
age: int

University

name: string

UniversityDepartment

name: string

Figure 66: Example of aggregation and composition in UML class diagrams

Composition is represented with a filled diamond instead than a hollow one, in this case there is a life cycle de-

pendency, so when the container is destroyed the contents are destroyed too. Like when a university is dissolved,

4 SOME COMPUTER SCIENCE FUNDAMENTALS 100



2D Game Development: From Zero To Hero

its departments will cease to exist. Conversely, a teacher may have some students under their wing, but when a

teacher remains without students they won’t magically disappear: the teacher’s life cycle is independent from their

students’.

4.13.2.3.5 Dependency

The dependency relationship is the one that gives us the least amount of coupling, it represents a “supplier-client”

relationships, where the supplier supplies its functions (methods) to the client. The association is represented in a

dashed line with an open arrow that points towards the supplier.

This means that the client class requires, needs or depends on the supplier.

There are many categories of dependency, like <<create> or <<call>> that explain further the type of dependency

exists between the supplier and the client.

An example could be between a “Car Factory” and a class “Car”: the “CarFactory” class depends on the “Car” class,

and such dependency is an instantiation dependency.

CarFactory

Car

Figure 67: Example of dependency in UML class diagrams

4.13.2.4 Notes

As with Use Case diagrams, class diagrams can make use of notes too, and the graphical language used to represent

them is exactly the same one used in the Use Case Diagrams.

4.13.3 Activity Diagrams

Activity diagrams are themore powerful version of flow charts: they represent the flux of an activity in detail, allowing

to have a better understanding of a process or algorithm.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 101



2D Game Development: From Zero To Hero

Take Shopping cart

Take Item

Put Item in Shopping Cart

Delete Item name from Shopping list

More Items in Shopping List? yes

Go to checkout

Pay

no

Figure 68: Example of an activity diagram

4.13.3.1 Start and End Nodes

Each diagram begins what a “start node”, represented with a filled black circle, and they end with an “end node”

which is represented with a filled black circle inside of a hollow circle.

Figure 69: Example of activity diagrams start and end nodes

4.13.3.2 Actions

Each action taken by the software is represented in the diagram via a rounded rectangle, a very short description of

the action is written inside the rounded rectangle space.

Delete Item name from Shopping list

Figure 70: Example of Action in activity diagrams

4.13.3.3 Decisions (Conditionals) and loops

4 SOME COMPUTER SCIENCE FUNDAMENTALS 102



2D Game Development: From Zero To Hero

Decisions and loops are enclosed in diamonds. If a condition needs to be written, the diamond can become an

hexagon, to make space for the condition to be written or guards can be used to express the condition.

Get Input number

number bigger than 0yes no

Double the number Triple the number

Figure 71: Example of decision, using hexagons to represent the condition

Create random number between 0 and 10

Get input

Compare with number

[Wrong number]

You won

[Right number]

Figure 72: Example of loops, using guards to represent the condition

All the branches that depend on a condition start on the condition itself and end on a diamond, as shown below.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 103



2D Game Development: From Zero To Hero

Read cell

cell is evenyes

Double the cell value Triple the cell value

Write cell value to console

yes
There are more cells in the row

yes
There are more rows in table

Figure 73: Example of how nested loops and conditions are performed

Note!

Sometimes loops can make use of empty diamonds (called “merges”) to make the

diagram clearer.

4.13.3.4 Synchronization

Synchronization (or parallel processing) is represented in activity diagrams by using filled black bars that enclose

the concurrent processes: the bars are called “synchronization points” or “forks” and “joins”

Take Order

Send Order confirmation Process Order

Figure 74: Example of concurrent processes in activity diagrams

In the previous example, the activities “Send Order Confirmation” and “Process Order” are processed in parallel,

independently from each other, the first activity that finishes will wait until the other activity finishes before entering

the end node.

4.13.3.5 Swimlanes

Swimlanes are a way to organize and group related activities in columns. For instance a shopping activity diagram

4 SOME COMPUTER SCIENCE FUNDAMENTALS 104



2D Game Development: From Zero To Hero

can have the “Customer”, “Order”, “Accounting” and “Shipping” swimlanes, each of which contains activities related

to their own categories.

Place Order

Receive Confirmation

Receive Order

Pay Bill

Take Order

Process Order

Record Shipping

Close Order

Packaging

Ship Order

Customer Order Accounting Shipping

Figure 75: Example of swimlanes in activity diagrams

4.13.3.6 Signals

Signals are used to represent how activities can be influenced or modified from outside the system. There are two

symbols used to represent signals.

The “Sent Signal” symbol is represented with a convex pentagon (which reminds an arrow going away from our

system), while the “Received Signal” is represented by a concave pentagon (which reminds a “slot” where the “sent

signal” symbol can connect to).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 105



2D Game Development: From Zero To Hero

Search product

Put product in basket

Place Order

Deliverer rings

Confirm Receipt

Accept Order

Take products from store

Deliver Products

Customer Store

Figure 76: Example of signals in activity diagrams

4.13.3.7 Notes

As with Use Case and Class diagrams, Activity Diagrams can make use of notes, in the same way as the other two

diagrams we presented in this book do.

Make sure the shopping cart works well!Take Shopping cart

Take Item

Put Item in Shopping Cart

Delete Item name from Shopping list

More Items in Shopping List? yes

Go to checkout

Pay

no

Figure 77: Example of a note inside of an activity diagram

4.13.3.8 A note on activity diagrams

4 SOME COMPUTER SCIENCE FUNDAMENTALS 106



2D Game Development: From Zero To Hero

The components of activity diagrams shown here are just a small part of the used components, but they should be

enough to get you started designing and reading most of the activity diagrams that exist.

4.13.4 Sequence Diagrams

Sequence diagrams are used to represents how objects (called “participants”) interact with each other and such

interactions are represented in a time sequence.

4.13.4.1 Lifelines

The central concept of sequence diagrams are lifelines: the represent the time a participant is “alive” and when it

is doing something.

WebServer

WebServer

Request

Response

Figure 78: Example of a sequence diagram lifeline

The time flows from top to bottom, a dashed line represents the participant exists (for instance an object is instan-

tiated in memory), while the rectangle that replaces the dotted line represents the participant being “active” (for

instance one of the object’s functions is called).

4.13.4.1.1 Participants

The participants don’t have to be actual classes, since sequence diagrams represent interactions at a “higher level”

than mere code-bound planning.

Some UML drawing software allows for custom shapes for each participant, like the following:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 107



2D Game Development: From Zero To Hero

Actor

Actor

Generic_Participant

Generic_Participant

Queue

Queue

Database

Database

Collection

Collection

Figure 79: Some alternative shapes for participants

4.13.4.2 Messages

Each object (represented by a lifeline) communicates with other objects (and the “outside”) through “messages”.

Messages are represented by arrows and an example can be seen here:

Class_A

Class_A

Class_B

Class_B

Class_C

Class_C

Found Message

Synchronous Message

Asynchronous Message

Self-message

Return

Lost Message

Figure 80: Messages in a sequence diagram

Let’s analyze them one by one:

• Found Messages are messages that come from “outside”, from the perspective of the part of the system we

are analyzing, they may come from another system or even the user.

• Synchronous Messages and returns are messages that activate a class and wait for a “return message”.

These usually represent a synchronous function call (but it can represent a more abstract concept).

• Asynchronous Messages are messages that activate a class but don’t wait for a return value. These usually

represent asynchronous functions calls.

• Self-messages are messages from an object to itself, they usually represent an internal function call.

• Lost Messages are messages sent towards the “outside”, from the perspective of the part of the system we

are analyzing.

4.13.4.3 Object Instantiation and Destruction

4 SOME COMPUTER SCIENCE FUNDAMENTALS 108



2D Game Development: From Zero To Hero

Sometimes it may be useful to represent the instantiation and destruction of objects in a sequence diagram. UML

provides such facilities via the <<instantiate>>, <<create>> and <<destroy>> keywords, as well as a symbol for the de-

struction of an object.

Class_1

Class_1 Class_2

<<instantiate>> Class_2

doStuff()

result

<<destroy>>

Figure 81: Object instantiation and destruction in a sequence diagram

4.13.4.4 Grouping and loops

From time to time, we may need to represent a series of messages being sent in parallel, a loop, or just group some

messages to represent them in a clearer manner. This is where grouping comes of use: it has a representation based

on “boxes”, like the following:

User

User

Monte_Carlo_Calculator

Monte_Carlo_Calculator

Input_Generator

Input_Generator

compute()

loop [10000 times]

generate_input()

result

result

Figure 82: A loop grouping in a sequence diagram

4.13.4.5 Notes

4 SOME COMPUTER SCIENCE FUNDAMENTALS 109



2D Game Development: From Zero To Hero

Like all UML diagrams, it is possible to use notes to add some comments that may be useful for the interpretation

of our diagrams, like follows.

Class_1

Class_1

Class_2

Class_2

doStuff()

result

This is a note.

Figure 83: Example of notes in a sequence diagram

4.13.5 Other diagrams

UML is composed by a ton of diagrams that can be used to communicate with your teammates and organize your

work, among them we find:

• Component Diagrams;

• Communication Diagrams;

• Composite Structure Diagrams;

• Deployment Diagrams;

• Package Diagrams;

• Profile Diagrams;

• State Diagrams;

• Timing Diagrams.

In this chapter we just saw the ones that will help you the most when reading the rest of this book, as well as

effectively planning any project you have in mind.

4.14 Generic Programming

Sometimes it may be necessary (mostly in the case of containers) to have the same kind of code to work on different

data types, which means that we need to abstract types into variables and be able to code accounting for such

types.

Generic Programming is a blanket-term that defines a style of computer programming where algorithms are

written in terms of “to be specified later” data types, this usually applies to languages that make use of static

typing[g].

4 SOME COMPUTER SCIENCE FUNDAMENTALS 110



2D Game Development: From Zero To Hero

4.15 Data Structures

This section is dedicated to give some basic explanation of some advanced containers and data structures that are

used in computer science, allowing us to make an informed choice when we want to implement some even more

advanced containers in the future.

Where possible, we will include big-O performance counters for the basic functions of: adding/removing and item at

the beginning, adding/removing an item at the end, adding/removing an item in an arbitrary position and indexing

at a certain position.

This section is in no way exhaustive, but should be enough to make an informed decision on what containers to use

for our components, according to necessities.

Note!

This section will be purely theoretical and many data structures will have no code

blocks, this is because implementations vary wildly between programming languages

and some of these structures are integrated in such languages.

4.15.1 Graphs

A graph is a data structure that contains a set of vertices (or nodes) which may be connected by a set of edges (or

links).

Graphs can be represented in code in two common ways (there are surely other ways to do so): using adjacency

lists or using adjacency matrices.

To explain the two main ways to represent graphs, we will use the following reference image:

A

B

D

C

E

Figure 84: Graphical representation of a simple graph

4 SOME COMPUTER SCIENCE FUNDAMENTALS 111



2D Game Development: From Zero To Hero

4.15.1.0.1 Adjacency Lists

Adjacency lists are very simple: they just list the “neighbours” inside a list-like container, every time the graph

gets changed, so will the adjacency lists. This method is really flexible and easy to implement. In fact it can be

represented in a simple table:

Table 27: A simple adjacency list for our reference image

Node Adjacency List

A [B, D]

B [A, C, D]

C [B]

D [A, B, E]

E [D]

[This section is a work in progress and it will be completed as soon as possible]

4.15.1.0.2 Adjacency Matrices

Another method is to use matrices as a way to store relations between nodes. We have an n × n matrix (where n

is the number of nodes involved) filled with zeros; we put a 1 for every connection that the nodes have (in many

conventions, self-loops use the value 2).

Here is an example:



0 1 0 1 0

1 0 1 1 0

0 1 0 0 0

1 1 0 0 1

0 0 0 1 0


If we label the matrix, things are a little bit easier to read:

Table 28: How to read an adjacency matrix

A B C D E

A 0 1 0 1 0

B 1 0 1 1 0

C 0 1 0 0 0

D 1 1 0 0 1

4 SOME COMPUTER SCIENCE FUNDAMENTALS 112



2D Game Development: From Zero To Hero

E 0 0 0 1 0

Note!

For non-directed graphs (like the one in the reference image), adjacency matrices are

mirrored on the main diagonal. This may be useful information if you really want to

squeeze the last bit of space out of your implementation.

Using the table, we can see that we have a 1 in “row A, column B”, which means there is a link “A to B”, since there

is a 1 in “row B, column A”, it means that there is a link “B to A” too. This makes it easy to store single-direction

relationships (for Directed Graphs) in a compact way.

[This section is a work in progress and it will be completed as soon as possible]

4.15.2 Trees

When you are a programmer, sooner or later you will have to deal with trees: they are a data structure that represents

a hierarchy, using a set of nodes.

Trees can be defined as a “recursive data structure”, made up of a node and a bunch of sub-trees connected to it.

G

D H

B
F

A C
E

I

Figure 85: Example of a tree structure

The fact that we can define trees recursively also means that they’re a good candidate for all kinds of recursive

algorithms, which can help simplifying the code quite a bit.

Trees are the base structure for a lot of other data structures, like heaps and binary search trees.

In this book we will focus mostly on binary trees: trees where each node has at most 2 children.

A possible implementation of a tree could be the following:

Listing 24: A possible implementation of a tree class

1 class Node{

4 SOME COMPUTER SCIENCE FUNDAMENTALS 113



2D Game Development: From Zero To Hero

2 /*

3 * This is an example of a simple node structure for a tree.

4 * It can be used as root or any other node

5 */

6 String content;

7 Node left;

8 Node right;

9

10 constructor(String value){

11 this.content = value;

12 }

13 }

14

15

16 function build_example_tree (){

17 // Let's build the example tree; starting with the nodes

18 Node A = Node("A");

19 Node B = Node("B");

20 Node C = Node("C");

21 Node D = Node("D");

22 Node E = Node("E");

23 Node F = Node("F");

24 Node G = Node("G");

25 Node H = Node("H");

26 Node I = Node("I");

27 // Now we connect the various components (the edges)

28 B.left = A;

29 B.right = C;

30 F.left = E;

31 D.left = B;

32 D.right = F;

33 H.right = I;

34 G.left = D;

35 G.right = H;

36 // The tree is ready to be used , let's return the root (G)

37 return G;

38 }

4.15.2.1 Depth-first Search

The Depth-first search is a so-called “tree traversal algorithm”, which means that it’s essentially a way to explore a

tree structure. In this case, the algorithm will try to reach the nodes farthest from the root first, before “backtracking”

(that means before going “back towards the root”).

As said earlier, we will focus on binary trees.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 114



2D Game Development: From Zero To Hero

1

2 7

3 4

5 6

8

9

Figure 86: Order in which the nodes are visited during DFS

Depth-first search can be useful in the following situations (as well as others):

• Sorting;

• Maze generation (see the Randomized DFS Method in the Maze generation section);

• Maze solving (which may be useful for Path finding);

The DFS algorithm hides some subtleties, though: the algorithm will “traverse” the tree in the same order, but

different implementations will “visit the tree nodes” differently. We will take a look at how nodes are visited now.

In explaining the DFS algorithm, we will refer to the example tree we saw earlier, here it is again:

G

D H

B
F

A C
E

I

Figure 87: Example tree that will be traversed by DFS

4.15.2.1.1 Pre-order Traversal

The pre-order traversal visits the current node before visiting its children. That means that the algorithm performs

4 SOME COMPUTER SCIENCE FUNDAMENTALS 115



2D Game Development: From Zero To Hero

the following operations, in order:

1. Visit the current node

2. Recursively traverse the current node’s left subtree

3. Recursively traverse the current node’s right subtree

If we traverse the example tree with pre-order traversal, and print the visited node, the output will be: GDBACFEHI

Here is how an example implementation of a pre-order traversal of a binary tree using DFS would look like:

Listing 25: Pre-order traversal of a tree using DFS

1 function dfs_traverse_preorder(Node n){

2 // Step 1: Visit the node , in this case we print its value

3 print(n.content);

4 // Step 2: We traverse the left subtree , using recursion;

5 i f (n.left i s not nul l ){

6 dfs_traverse_preorder(n.left);

7 }

8 // Step 3: We traverse the right subtre , using recursion;

9 i f (n.right i s not nu l l ){

10 dfs_traverse_preorder(n.right);

11 }

12 }

13

14 function main(){

15 Node root = build_example_tree ();

16 dfs_traverse_preorder(root);

17 }

4.15.2.1.2 In-order Traversal

The in-order traversal visits the tree “from left to right”, by prioritizing the traversal of the left subtrees before visiting

the current node. That means that the algorithm performs the following operations, in order:

1. Recursively traverse the current node’s left subtree

2. Visit the current node

3. Recursively traverse the current node’s right subtree

If we traverse the example tree with in-order traversal, and print the visited node, the output will be: ABCDEFGHI

Notice how in this case, the output is ordered. This is because the example tree is a special kind of tree, called a

“binary search tree”. We will see more in the dedicated paragraph.

Here is how an example implementation of a in-order traversal of a binary tree using DFS would look like:

Listing 26: In-order traversal of a tree using DFS

1 function dfs_traverse_inorder(Node n){

4 SOME COMPUTER SCIENCE FUNDAMENTALS 116



2D Game Development: From Zero To Hero

2 // Step 1: We traverse the left subtree , using recursion;

3 i f (n.left i s not nul l ){

4 dfs_traverse_inorder(n.left);

5 }

6 // Step 2: Visit the node , in this case we print its value

7 print(n.content);

8 // Step 3: We traverse the right subtre , using recursion;

9 i f (n.right i s not nu l l ){

10 dfs_traverse_inorder(n.right);

11 }

12 }

13

14 function main(){

15 Node root = build_example_tree ();

16 dfs_traverse_inorder(root);

17 }

4.15.2.1.3 Post-order Traversal

The post-order traveral method prioritizes traversing both the children to visiting the current node, thus it will perform

the following operations:

1. Recursively traverse the current node’s left subtree

2. Recursively traverse the current node’s right subtree

3. Visit the current node

If we traverse the example tree with post-order traversal, and print the visited node, the output will be: ACBEFDIHG

Here is how an example implementation of a post-order traversal of a binary tree using DFS would look like:

Listing 27: Post-order traversal of a tree using DFS

1 function dfs_traverse_postorder(Node n){

2 // Step 1: We traverse the left subtree , using recursion;

3 i f (n.left i s not nul l ){

4 dfs_traverse_postorder(n.left);

5 }

6 // Step 2: We traverse the right subtre , using recursion;

7 i f (n.right i s not nu l l ){

8 dfs_traverse_postorder(n.right);

9 }

10 // Step 3: Visit the node , in this case we print its value

11 print(n.content);

12 }

13

14 function main(){

15 Node root = build_example_tree ();

16 dfs_traverse_postorder(root);

17 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 117



2D Game Development: From Zero To Hero

4.15.2.1.4 Reverse Traversals

These kinds of traversals are essentially the same of the ones we’ve already seen, but the right subtree is given

priority over the left. Here are the operations, listed for reference.

Reverse Pre-Order:

1. Visit the current node

2. Recursively traverse the current node’s right subtree

3. Recursively traverse the current node’s left subtree

Reverse In-Order:

1. Recursively traverse the current node’s right subtree

2. Visit the current node

3. Recursively traverse the current node’s left subtree

Reverse Post-Order:

1. Recursively traverse the current node’s right subtree

2. Recursively traverse the current node’s left subtree

3. Visit the current node

The code will be omitted, since it is easy to infer how the code would look, given the previous examples.

4.15.2.2 Breadth-first search

Breadth-first search, or BFS, uses a concept that is opposite of the one in DFS (Depth-first search): instead of going

as deep as possible inside the tree, this algorithm prefers exploring “in layers”.

The root will be visited first, then all its children, after that all its nephews, etc…

4 SOME COMPUTER SCIENCE FUNDAMENTALS 118



2D Game Development: From Zero To Hero

1

2 3

4 5

7 8

6

9

Figure 88: Order in which the nodes are visited during BFS

In the implementation shown here, the steps are the following:

1. Make a queue and enqueue the root

2. If the queue is not empty, take the first node, if it is empty, just stop

3. If such node has any children, enqueue them, in order

4. Visit the node

5. Go back to point 2

A possible implementation of a BFS algorithm could be the following:

Listing 28: Traversal of a tree using BFS

1 function traverse_bfs(Node root){

2 // We will use a queue for this algorithm

3 Queue q = new Queue();

4 // First thing , we enqueue the root

5 q.enqueue(root);

6 // Now comes the iterative part. This will keep going until

7 // the tree is completely explored.

8 while (q i s not empty){

9 // We take the first node in the queue

10 Node n = q.dequeue ();

11 // We enqueue its children , if they exist

12 i f (n.left i s not nu l l ){

13 q.enqueue(n.left);

14 }

15 i f (n.right i s not nu l l ){

16 q.enqueue(n.right);

17 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 119



2D Game Development: From Zero To Hero

18 // Now we visit the current node

19 print(n.content);

20 // The loop will continue with the next node in the layer ,

21 // automatically start the next layer , or stop because there

22 // are no more nodes to visit.

23 }

24 }

BFS is a great algorithm to solve mazes and find the shortest path between two nodes, making it a good choice for

Path finding.

4.15.3 Dynamic Arrays

In many languages, arrays are sized statically, with a size decided at compile time. This severely limits the array’s

usefulness.

Dynamic Arrays are a wrapper around arrays, allowing it to extend its size when needed. This usually entails some

additional operations when inserting or deleting an item.

Dynamic_Array

Native_array

Capacity: 4
Filled: 3

2 31

Figure 89: Dynamic Arrays Reference Image

4.15.3.1 Performance Analysis

Indexing an item is immediate, since arrays allow to natively index themselves.

Inserting an item at the beginning is a heavy task, since it requires either moving all the present items or rebuilding

the internal native array. Such operations require copying or moving each element, giving us a time complexity

averaging on O(n).

Dynamic_Array

Native_array

Capacity: 4
Filled: 2

0

Value to insert

1 2

Dynamic_Array

Native_array

Capacity: 4
Filled: 3

1 20

Dynamic_Array

Native_array

Capacity: 4
Filled: 2

0

Value to insert

1 2

Figure 90: Adding an element at the beginning of a Dynamic Array

Inserting an item at the end, if we keep a pointer to the last item inserted, is an operation that usually happens

immediately (time complexity O(1)), but when the array is full, we need to instantiate a new native array (usually

double the size of the current one) and copy all elements inside the new array (operation that has time complexity

4 SOME COMPUTER SCIENCE FUNDAMENTALS 120



2D Game Development: From Zero To Hero

of O(n)). Since the number of O(1) operations outweighs by a long shot the number of O(n) operations, it’s possible to

demonstrate that in the long run appending an item at the end of a dynamic array has a time complexity averaging

around O(1).

Dynamic_Array

Native_array

Capacity: 8
Filled: 5

0

Inserting new element

1 2 3 4

Dynamic_Array

Native_array

Capacity: 8
Filled: 4

0

Value to Insert

Inserting previously present elements

1 2 3 4

Dynamic_Array

Native_array

Capacity: 4
Filled: 4

0

Value to Insert

The array is full, doubling needed

1 2 3 4

Dynamic_Array

Native_array

Capacity: 8
Filled: 0

0

Value to Insert

Doubling the size of the array

Figure 91: Adding an element at the end of a Dynamic Array

Inserting an item in an arbitrary position, much like inserting an item at the beginning requires moving some items

further into the array, potentially all of them (when the arbitrary position is the beginning of the array), thus giving us

a time complexity of O(n). Such operation could trigger an array resize, which has no real influence on the estimate.

Dynamic_Array

Native_array

Capacity: 4
Filled: 3

0

Inserting the item

1 2

Dynamic_Array

Native_array

Capacity: 4
Filled: 2

0

Value to insert

Moving the items

1 2

Dynamic_Array

Native_array

Capacity: 4
Filled: 2

0

Value to insert

1 2

Figure 92: Adding an element at an arbitrary position of a Dynamic Array

Some implementations of the Dynamic Arrays try to save space when the number of items goes lower than 1
4 of the

array capacity during a deletion, the internal array is rebuilt with half the size. Such operation has a time complexity

of O(n).

Some other implementations use a 1
4 /

3
4 rule, halving the array capacity when the item deletion brings the number

of items lower than 1
4 of the array and doubling it when an insertion makes the number of elements higher than

3
4

of the array capacity.

Note!

Not all programming languages have native support for arrays, for instance Python

normally uses lists (although it supports arrays via the array standard library).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 121



2D Game Development: From Zero To Hero

Table 29: Performance table for Dynamic Arrays

Operation Average Cost

Indexing O(1)

Insert/Delete At Beginning O(n)

Insert/Delete At End O(1) amortized

Insert/Delete at position O(n)

Table 30: Summary Table for Dynamic Arrays

Container Name Dynamic Array

When To Use it All situations that require direct indexing of a container, but insertions and

removals are not extremely common, and usually take the form of “push back”

(insertion at the end)

Advantages Direct Indexing, Fast iteration through all the elements, given by the fact that

arrays are stored compact in memory, fast appending.

Disadvantages Slow insertions in arbitrary positions and at the head of the array.

4.15.4 Linked Lists

Linked Lists are a data structure composed by “nodes”, each node contains data and a reference to the next node in

the linked list. Differently from arrays, nodes may not be contiguous in memory, which makes indexing problematic.

Linked_List

Data Next Data Next Data Next

Head

Figure 93: Linked List Reference Image

Some implementations feature a pointer to the last element of the list, to make appending items at the end easier

and quicker.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 122



2D Game Development: From Zero To Hero

Linked_List

Data Next Data Next Data Next

Head
Tail

Figure 94: Double-Ended Linked List Reference Image

4.15.4.1 Performance Analysis

Since we only have a handler on the first node, indexing requires us to scan all the elements until we reach the one

that was asked for. This operation has a potential time complexity of O(n).

Inserting an item at the beginning is immediate, we just need to create a new node, make it point at the current

head of the list and then update our “handle” to point at the newly created node. The number of operations is

independent of how many data we already have, so the time complexity is O(1).

Linked_List

Data Next Data Next Data Next

Head

Data Next

0

Value to insert (node)

Linked_List

Data Next Data Next Data Next

Head Data Next

0

Temporary Variable

Linked_List

Data Next Data Next Data Next

Head Data Next

0

Figure 95: Inserting a new node at the beginning of a linked list

Appending an item at the end has a time complexity that varies depending on the chosen implementation: if the

list has a reference to the final node, we just need to create a new node, update the final node’s reference (usually

called “next”) to point at the new node and then update the reference to the final node to point at the newly created

node (time complexity O(1)). If our queue doesn’t have such reference, we will need to scan the whole list to find

the final node (time complexity O(n)).

Linked_List

Data Next Data Next Data Next

Head
Tail

Data Next

0

Value to insert (node)

Linked_List

Data Next Data Next Data Next

Head
Tail

Data Next

0

Figure 96: Inserting a new node at the end of a (double-ended) linked list

Inserting at an arbitrary position requires us to scan the list until we find the position that we want, after that we

just need to split and rebuild the references correctly, which is a fast operation.

Linked_List

Data Next Data Next Data Next

Head
Tail

Data Next

0

Value to insert (node)

Linked_List

Data Next Data Next Data Next

Head
Tail

Data Next

0

Temporary Variable

Linked_List

Data Next Data Next Data Next

Head
Tail

Data Next

0

Figure 97: Inserting a new node at an arbitrary position in a (double-ended) linked list

4 SOME COMPUTER SCIENCE FUNDAMENTALS 123



2D Game Development: From Zero To Hero

Table 31: Performance table for Linked Lists

Operation Average Cost

Indexing O(n)

Insert/Delete At Beginning O(1)

Insert/Delete At End O(1) for double-ended, o(n) otherwise

Insert/Delete at position time to search + O(1)

Table 32: Summary Table for Linked Lists

Container Name Linked List

When To Use it All situations that require quick insertions/removals, either on the head or the tail

(used as stacks or queues).

Advantages Very fast insertions/removals, quite fast iteration through all the elements.

Disadvantages Slow indexing at an arbitrary position. Sorting can be complex.

4.15.5 Doubly-Linked Lists

A doubly-linked list is a variation of a linked list where each node not only has a reference to its successor, but

also a reference to its predecessor. This allows for easy processing of the list in reverse, without having to create

algorithms that entail a huge overhead.

All the operations of insertion, indexing and deletion are performed in a similar fashion to the classic singly-linked

list we saw earlier, just with an additional pointer to account for.

Linked_List

Head

Prev Data Next Prev Data Next Prev Data Next

Tail

Figure 98: Doubly Linked List Reference Image

Table 33: Performance table for Doubly-Linked Lists

Operation Average Cost

Indexing O(n)

Insert/Delete At Beginning O(1)

Insert/Delete At End O(1)

4 SOME COMPUTER SCIENCE FUNDAMENTALS 124



2D Game Development: From Zero To Hero

Operation Average Cost

Insert/Delete at position time to search + O(1)

Table 34: Summary Table for Linked Lists

Container Name Doubly-Linked List

When To Use it All situations that require quick insertions/removals, either on the head or the tail

(stacks or queues) or iterating through an entire list, forwards or backwards.

Advantages Very fast insertions/removals, quite fast iteration through all the elements.

Possibility of easily iterating the list in reverse order.

Disadvantages Slow indexing at an arbitrary position. Sorting can be complex.

4.15.6 Hash Tables

Hash Tables are a good way to store unordered data that can be referred by a “key”. These structures have

different names, like “maps”, “dictionaries” or “hash maps”.

The idea behind a hash map is having a key subject to a hash function[g] that will decide where the item will be

positioned in the internal structure.

Hash Function

Value

0

4

9

5

7

Figure 99: Hash Table Reference Image (Hash Table with Buckets)

The simplest way to implement a hash table is using an “array with buckets”: an array where each cell has a reference

to a linked list.

On average, finding an item requires passing the key through the hash function, such hash function will tell us where

the item is in our internal structure immediately. Thus giving a time complexity of O(1).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 125



2D Game Development: From Zero To Hero

Inserting has more or less the same performance, the key gets worked through the hash function, deciding which

linked list will be used to store the item.

Deletion works in the same fashion, passing the key through the hash function and then deleting the value; giving

a time complexity of O(1)

Table 35: Performance table for Hash Tables

Operation Average Cost

Searching O(1)

Insert O(1)

Delete O(1)

Table 36: Summary Table for Hash Tables

Container Name Hash Table

When To Use it All situations that require accessing an element by a well-defined key quickly.

Building unordered data sets.

Advantages Fast insertions/removals, direct indexing (in absence of hash collisions) by key.

Disadvantages In case of a bad hashing function, it reverts to the performance of a linked list,

cannot be ordered.

4.15.7 Binary Search Trees (BST)

Binary search trees, sometimes called “ordered trees” are a container that have an “order relation” between their

own elements.

Left RightData

Left RightData Left RightData

Left RightData Left RightData Left RightData

15

10

8 11

25

30

Figure 100: Binary Search Tree Reference

The order relation allows us to have a tree that is able to distinguish between “bigger” and “smaller” values, thus

making search really fast at the price of a tiny slowdown in insertion and deletion.

Searching in a BST is easy, starting from the root, we check if the current node is the searched value; if it isn’t we

compare the current node’s value with the searched value.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 126



2D Game Development: From Zero To Hero

If the searched value is greater, we search on the right child. If it is smaller, we continue our search on the left child.

Recursively executing this algorithm will lead us to find the node, if present. Such algorithm has a O(log(n)) time

complexity.

In a similar fashion, insertion will recursively check subtrees until the right spot of the value is found. The insertion

operation has the same time complexity as searching: O(log(n)).

Deletion is a bit more conceptually complex, since it’s necessary to maintain the ordering of the nodes. Such

operation has a time complexity of O(log(n)).

Table 37: Performance table for Binary Search Trees

Operation Average Cost

Searching O(log(n))

Insert O(log(n))

Delete O(log(n))

Table 38: Summary Table for Binary Search Trees

Container Name Binary Search Tree

When To Use it Situations that require good overall performance and requires fast search times.

Advantages Good insertion and removal times, searching on this structure is fast.

Disadvantages Given the nature of the data structure, there is no direct indexing, nor ordering.

4.15.8 Heaps

Heaps are a tree-based data structure where we struggle to keep a so-called “heap property”. The heap property

defines the type of heap that we are using:

• Max-Heap: For each node N and its parent node P, we’ll always have that the value of P is always greater or

equal than the value of N;

• Min-Heap: For each node N and its parent node P, we’ll always have that the value of P is always less or equal

than the value of N;

4 SOME COMPUTER SCIENCE FUNDAMENTALS 127



2D Game Development: From Zero To Hero

Left RightData

Left RightData
Left RightData

Left RightData Left RightData Left RightData

33

34

39 51

35

58

Left RightData

49

Figure 101: Heap Reference Image (Min-Heap)

Heaps are one of the maximally efficient implementation of priority queues, since the highest (or lowest) priority

item is stored in the root and can be found in constant time.

Table 39: Performance table for Heaps

Operation Average Cost

Find Minimum O(1) to O(log(n)), depending on the implementation

Remove Minimum O(log(n))

Insert Θ(1) to O(log(n)) depending on the implementation

Table 40: Summary Table for Heaps

Container Name Heap

When To Use it All situations where you require to find and/or extract the minimum or maximum

value in a container quickly; like priority queues.

Advantages Good general time complexity, maximum performance when used as priority

queues.

Disadvantages No inherent ordering, there are better solutions for general use.

4.15.9 Stacks

Stacks are a particular data structure, they have a limited way of working: you can only put or remove items on top

of the stack, plus being able to “peek” on top of the stack.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 128



2D Game Development: From Zero To Hero

1

5

Push Pop

Stack Pointer

Figure 102: How a stack works

Stacks are LIFO (Last in - First Out) data structures, and can be implemented with both a linked list or a cleverly-

indexed array.

Depending on the single implementation, the operation used to “pop” an item from the stack will also return the

element, ready to be used in an upcoming computation.

1 5Array

Stack Pointer

Linked List

Stack Pointer

15

Figure 103: Array and linked list implementations of a stack

4.15.10 Queues

Queues are the exact opposite of stacks, they are FIFO (First in - First Out) data structures: you can put items on the

back of the queue, while you can remove from the head of the queue.

1 5

EnqueueDequeue

Figure 104: How a queue works

Depending on the single implementation, the operation used to “dequeue” an item from the queue will also return

the element just removed, ready to be used in an upcoming computation.

As with stacks, queues leverage limitations in their way of working for greater control over the structure itself.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 129



2D Game Development: From Zero To Hero

Usually queues are implemented via linked lists, but can also be implemented via arrays, using multiple indexes and

index-wrapping when iterating.

1 5

Head Tail

Array

Linked List

Head

1 5

Tail

Figure 105: Array and linked list implementation of a queue

4.15.11 Circular Queues

Circular Queues are a particular kind of queues that are infinitely iterable, every time an iterator goes after the last

element in the queue, it will wrap around to the beginning.

5

9

40

3

Pointer

Figure 106: How a circular queue works

Circular Queues can be implemented via linked lists or cleverly indexed arrays, with all the advantages and disad-

vantages that such structures entail.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 130



2D Game Development: From Zero To Hero

1 5

Head Tail

Array

Linked List

Head

1 5

Tail

Figure 107: Array and linked list implementation of a circular queue

4.16 The principle of locality

This is one of the most-talked about principles in computer science: it usually refers to the principle of “memory

locality”, but it may also refer to other kinds, like “temporal locality” or “branch locality”.

Let’s analyze the most common ones.

• Spatial locality: (sometimes called “memory locality”) if a certain region of storage (or memory) is refer-

enced, there is a good probability that nearby regions of storage (or memory) will be referenced in the near

future. This is true, for instance, in Arrays.

• Temporal locality: if a certain region of storage (or memory) is referenced, there is a good probability that

the same region will be referenced in the near future. CPU caches leverage this principle by copying recently-

used data into faster storage.

Temporal locality can be seen as a special case of spatial locality.

4.17 Treating multidimensional structures like one-dimensional ones

This is usually done when dealing with pointers, but we may need to use some math to deal with sprites and

animations too.

As we’ll see in the Sprite sheets section, it is more efficient to store sprites and animation frames in sprite sheets.

When dealing with frames of animation, we like our frames to be “one-dimensional”, each “cell” represents a certain

“time”.

0 1 2 3 4 5 6 7

Figure 108: The “easy way” of dealing with frames

When dealing with sprite sheets, we may find that our animation has frames saved in a “matrix” of some sort, like

4 SOME COMPUTER SCIENCE FUNDAMENTALS 131



2D Game Development: From Zero To Hero

so:

0 1 2

3 4

6

5

7

0

1

2

0 1 2

Width: 3

H
e
ig

h
t: 3

Figure 109: A sample sprite sheet with the same frames as before

The images we’ve just seen will help you understand how the following formulas work.

To convert from 2-dimensional (row, column) coordinates to a single index, the formula is:

index = width× row + column

Note!

Remember that in many programming languages arrays and similar structures are 0-

indexed. This is the system that will be used here.

If you’re using a language that indexes arrays starting from 1 (like Lua), these formulas

need to be changed a bit.

So if I want to know the index of the 3rd element of the second row, with index (2,1), the formula becomes:

index = 3× 1 + 2 = 5

The inverse formula is the following:

row = ⌊ index
width⌋

column = index%width

So if we wanted to know the (row,column) position of the frame with index 7 we would have:

row = ⌊ 7
3⌋ = ⌊2.33333⌋ = 2

column = 7%3 = 1

4 SOME COMPUTER SCIENCE FUNDAMENTALS 132



2D Game Development: From Zero To Hero

Note!

This can be done with structures with n dimensions, but the formula becomes a lot

more complex the more dimensions you add. We’ll stop at 2 for now.

4.18 Data Redundancy

When dealing with certain structures, there are operations that are inherently complex to do: let’s take for example

counting the elements in a list:

Listing 29: Counting the elements in a list

1 class List{

2 Node nodeList;

3 // ...

4 function getLength () -> in t {

5 in t counter = 0;

6 for (item in nodeList){

7 counter = counter + 1;

8 }

9 return counter;

10 }

11 }

It’s easy to see that an algorithm like this has aΘ(n) complexity, which may not be ideal for an operation as common

as finding the length of a list.

This is where data redundancy comes into play: the length of a list is an intrinsic property of the list itself, so why

not save it inside the “head” of our structure?

This will obviously require a bit more work in all the methods that will change the number of elements inside the list,

since we need to keep the “length” property in sync with the actual length of the list, but in exchange we can count

the elements in a list by doing a simple lookup.

Let’s see an example implementation:

Listing 30: Counting the elements in a list with data redundancy

1 class List{

2 Node nodeList;

3 in t length;

4 // ...

5 function getLength () -> in t {

6 return length;

7 }

8

9 function addItem(Node node){

4 SOME COMPUTER SCIENCE FUNDAMENTALS 133



2D Game Development: From Zero To Hero

10 // ... Normal operation ...

11 // ...

12 // We update our length counter

13 length = length + 1;

14 }

15

16 function removeItem(Node node){

17 // ... Normal removal operation ...

18 // ...

19 // We update our length counter

20 length = length - 1;

21 }

22

23 function clear(){

24 // ... Normal clear operation ...

25 // ...

26 // We clear the length too

27 length = 0;

28 }

29

30 // ...

31 }

Pitfall Warning!

It is extremely important that we keep our “redundant properties” synchronized with

the actual state of our objects, even when exceptions are raised. Not doing so will

create bugs.

Let’s consider another example: we have a standard linked list, like the one that follows:

7 9 5

Pointer

Figure 110: Singly-Linked List has no redundancy

Our “pointer” is pointing the node containing the number “5”, and now we want to know the value of the node that

precedes it. To do that we need to start from the head, saving in a temporary variable our nodes, until we find the

node pointed by our “pointer”.

Listing 31: Finding the previous element in a singly linked list

1 function get_previous_node(List lst , Node current_node) -> Node{

4 SOME COMPUTER SCIENCE FUNDAMENTALS 134



2D Game Development: From Zero To Hero

2 Node pointer = lst.head;

3 Node previous = nul l ;

4 while (pointer != current_node){

5 previous = pointer;

6 pointer = pointer.next;

7 }

8 return previous;

9 }

This operation has O(n) complexity, which is not great. If we wanted to print a list in reverse with such technique,

the situation would be even worse.

Doubly-linked lists are another example of data redundancy. We are saving the content of the “previous” node, so

that we can do a simple lookup with complexity O(1) and easily (and efficiently) do our “reverse printing”.

7 9 5

Figure 111: A doubly linked list is an example of redundancy

4.19 Introduction to Multi-Tasking

When it comes to humans, we are used to have everything at our disposal immediately, but when it comes to

computers, each processing unit (CPU) is usually able to perform only one task at a time.

To allow for multi-tasking (doing many activities at once), the CPU switches between tasks at high speeds, giving

us the illusion that many things are happening at once. There are many methods to ensure multi-tasking without

process starvation[g], the most used is pre-emption[g] where there are forced context switches between processes,

to avoid one hogging the CPU.

4.19.1 Multi-Threading vs Multi-Processing

Sometimes Multi-Threading and Multi-Processing are used interchangeably, but this is actually not correct. Let’s see

the differences between the two terms and how they contribute (in different ways) to allow multi-tasking.

Multi-Processing is a practice that makes use of multiple CPUs inside the samemachine, this allows to process CPU-

intensive calculations in a parallel manner, thus gaining performance in our software. This style of parallelization is

usually done by spawning multiple processes, each of which will be run on a different CPU (or Core).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 135



2D Game Development: From Zero To Hero

Process 1 Process 2

Figure 112: In a multi-processing environment, each CPU takes care of a task

Multi-Processing has some disadvantages: creating a process can be quite expensive and thus give us some tangible

overhead if processes are created and destroyed often.

Multi-Threading is a programming practice that allows to run different “lines of execution” (called “threads”), inside

of the same parent process, so to achieve the maximum possible CPU utilization.

Multi-Threading has the advantage of lower overhead, since threads are quite cheap to create, but also has some

more limitations when the tasks to execute are “CPU-bound” (take a lot of CPU time).

Process 1 Process 2

Figure 113: In multi-threading, the CPU uses I/O wait time to take care of another task

Multi-Threading works well when the threads are “I/O bound” (they use network or disk a lot, while the CPU usage

is low), this means essentially that while one thread is waiting for I/O (like loading an asset), another thread can

perform other calculations on the CPU instead of just “wait for the I/O to finish”.

4.19.2 Coroutines

If you search for the word “coroutine” online, you will find a lot of extremely convoluted explanations involving the

knowledge of the difference between preemptive[g] and non-preemptivemultitasking, subroutines, threads and lots

more. Let’s try to make sense of this.

First of all, coroutines are computer programs can run in multitasking (so it can run separated from our main game

loop) which are used in non-preemptive multitasking. Differently from the preemptive style defined in the glossary,

in non preemptive multitasking the operating system never forces a context switch, but it’s the coroutine’s job to

yield the control over to another function.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 136



2D Game Development: From Zero To Hero

Instead of “fighting for resources”, coroutines politely free the processor and give control of it to something else

(could be the caller or another coroutine), this form of multitasking is often called cooperative multitasking.

A particularly interesting point of coroutines is the fact that their execution can be “suspended” and “resumed”

without losing its internal state. Coroutines are used in more advanced engines (using the Actor Model) and in some

particular situations. You may never need to use a single coroutine, or you may need to use them every day, so it’s

worth knowing at least what they are.

4.20 Introduction to Multi-Threading

When it comes to games and software, we usually think of it as a single line of execution, branching to (not really)

infinite possibilities; but when it comes to games, we may need to dip our toes into the world of multi-threaded

applications.

4.20.1 What is Multi-Threading

Multi-Threading means that multiple threads exist in the context of a single process, each thread has an independent

line of execution but all the threads share the process resources.

In a game, we have the “Game Process”, which can contain different threads, like:

• World Update Thread

• Rendering Thread

• Loading Thread

• …

Multi-Threading is also useful when we want to perform concurrent execution of activities.

4.20.2 Why Multi-Threading?

Many people think of Multi-Threading as “parallel execution” of tasks that leads to faster performance. That is not

always the case. Sometimes Multi-Threading is used to simplify data sharing between flows of execution, other

times threads guarantee lower latency, other times again we may need threads to get things working at all.

For instance let’s take a loading screen: in a single-threaded application, we are endlessly looping in the input-

update-draw cycle, but what if the “update” part of the cycle is used to load resources from a slow storage media

like a Hard Disk or even worse, an optical disk drive?

The update function will keep running until all the resources are loaded, the game loop is stuck and no drawing will

be executed until the loading has finished. The game is essentially hung, frozen and your operating system may

even ask you to terminate it. In this case we need the main game loop to keep going, while something else takes

care of loading the resources.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 137



2D Game Development: From Zero To Hero

4.20.3 Thread Safety

Threads and concurrent execution are powerful tools in our “programmer’s toolbox”, but as with all powers, it has

its own drawbacks.

4.20.3.1 Race conditions

Imagine a simple situation like the following: we have two threads and one shared variable.

Thread 1

Result

Copy of
Variable

Variable

1
Result

Copy of
Variable

Thread 2

Figure 114: Two threads and a shared variable

Both threads are very simple in their execution: they read the value of our variable, add 1 and then write the result

in the same variable.

This seems simple enough for us humans, but there is a situation that can be really harmful: let’s see, in the following

example each thread will be executed only once. So the final result, given the example, should be “3”.

First of all, let’s say Thread 1 starts its execution and reads the variable value.

Thread 1

Result

Copy of
Variable

Variable

1
Result

Copy of
Variable

Thread 2

Read

Figure 115: Thread 1 reads the variable

Now, while Thread 1 is calculating the result, Thread 2 (which is totally unrelated to Thread 1) starts its execution

and reads the variable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 138



2D Game Development: From Zero To Hero

Thread 1

Result

Copy of
Variable

Variable

1
Result

Copy of
Variable

Thread 2

Read

1

...

Figure 116: While Thread 1 is working, Thread 2 reads the variable

Now Thread 1 is finishing its calculation and writes the result into the variable.

Thread 1

Result

Copy of
Variable

Variable

1
Result

Copy of
Variable

Thread 2

1

...

2

1

Write
Result

Figure 117: Thread 1 writes the variable

After That, Thread 2 finishes its calculation too, and writes the result into the variable too.

Thread 1

Result

Copy of
Variable

Variable

Result

Copy of
Variable

Thread 2

1

2

1

Write
Result

2

2

Terminated

Figure 118: Thread 2 writes the variable

Something is not right, the result should be “3”, but it’s “2” instead.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 139



2D Game Development: From Zero To Hero

Thread 1

Result

Copy of
Variable

Variable

Result

Copy of
Variable

Thread 2

1

2

1

2

2

Terminated Terminated

Figure 119: Both Threads Terminated

We just experienced what is called a “race condition”: there is no real order in accessing the shared variable, so

things get messy and the result is not deterministic. We don’t have any guarantee that the result will be right all

the time (or wrong all the time either).

4.20.3.2 Critical Regions

Critical Regions (sometimes called “Critical Sections”) are those pieces of code where a shared resource is used, and

as such it can lead to erroneous or unexpected behaviors. Such sections must be protected from concurrent access,

which means only one process or thread can access them at one given time.

4.20.4 Ensuring determinism

Let’s take a look at how to implement multi-threading in a safe way, allowing our game to perform better without

non-deterministic behaviors. There are other implementation approaches (like thread-local storage and re-entrancy)

but we will take a look at the most common here.

4.20.4.1 Immutable Objects

The easiest way to implement thread-safety is to make the shared data immutable. This way the data can only

be read (and not changed) and we completely remove the risk of having it changed by another thread. This is an

approach used in many languages (like Python and Java) when it comes to strings. In those languages strings are

immutable, and “mutable operations” only return a new string instead of modifying the existent one.

4.20.4.2 Mutex

Mutex (Short for mutual exclusion) means that the access to the shared data is serialized in a way that only one

thread can read or write to such data at any given time. Mutual exclusion can be achieved via algorithms (be careful

of out of order execution[g]), via hardware or using “software mutex devices” like:

• Locks (known also as mutexes)

• Semaphores

• Monitors

• Readers-Writer locks

• Recursive Locks

4 SOME COMPUTER SCIENCE FUNDAMENTALS 140



2D Game Development: From Zero To Hero

• …

Usually these multi-threaded functionalities are part of the programming language used, or available via libraries.

Let’s see how Mutex solve our concurrency problem.

As seen before, we have a shared variable and two threads that want to add one to it.

Figure 120: How mutex works (1/8)

Now the first thread reads the variable and “locks” the mutex (thus stopping other threads from accessing the

variable).

Figure 121: How mutex works (2/8)

When the second thread wants to access the “critical region”, it will check on the Mutex, find it “locked” and be

forced to wait: it cannot read the variable, because we would have a “race condition” otherwise.

Figure 122: How mutex works (3/8)

As soon as the first thread finishes its job, it will write the result in the variable and “unlock” the mutex, allowing

others to access the variable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 141



2D Game Development: From Zero To Hero

Figure 123: How mutex works (4/8)

Since the second thread was waiting, it will read the variable result (now 2) and “lock” the mutex for safety. The

second thread entered the “critical region”.

2

2

Figure 124: How mutex works (5/8)

The second thread will do its job as normal, if a third thread tried to access the variable, it would be stopped by the

locked mutex.

Figure 125: How mutex works (6/8)

When its job is done, the second thread will write to the variable and “unlock” the Mutex, thus allowing other threads

or processes to access the variable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 142



2D Game Development: From Zero To Hero

3

3

Figure 126: How mutex works (7/8)

Now both threads finished their jobs and the result inside the variable is correct.

3

3

Figure 127: How mutex works (8/8)

4.20.4.3 Atomic Operations

[This section is a work in progress and it will be completed as soon as possible]

4 SOME COMPUTER SCIENCE FUNDAMENTALS 143



2D Game Development: From Zero To Hero

5 A Game Design Dictionary

Why should you make games? Do it to give players joy from your unique

perspective and to have fun expressing yourself. You win and the players win.

Duane Alan Hahn

In this section we will talk about platforms, input systems and game genres, in a quick fashion. This chapter will

introduce you to the language and terms used in game design, this way the following chapters will be easier to

comprehend.

We will talk about the differences and challenges deriving from each decision and the basic way game genres work.

The objective of this chapter is giving you some terminology and knowledge about game design, before deep-diving

into the topic.

5.1 Platforms

There are several different platforms a game can be developed for, and each one has its own advantages and

drawbacks. Here we will discuss the most notable ones.

5.1.1 Arcade

Arcade cabinets have been around for decades, and have still a huge part in the heart of gaming aficionados with

classic series going on like “Metal Slug”. The main objective of these machines is to make you have fun, while forcing

you to put quarters in to continue your game.

These cabinets’ software is known to be very challenging (sometimes due to the fact that you’re popping quarters

into the machine for the “right to play”), having some nice graphics and sound. Arcade games are usually presented

in the form of an “arcade board”, which is the equivalent of a fully-fledged console, with its own processing chips

and read-only memory.

Figure 128: How an arcade machine usually looks like

5 A GAME DESIGN DICTIONARY 144



2D Game Development: From Zero To Hero

In the case of arcades, the hardware is usually tailored to support the software; with some exceptions added later

(like the Capcom Play System, also known as CPS), where the hardware is more stable between arcades, while the

software changes.

5.1.2 Console

Consoles are a huge (if not the biggest) part in the video game industry. Their Hardware is dedicated solely to

gaming (and some very marginal “multimedia functionalities”) and it evolves in “generations”: this means that

each “generation” has a stable hardware programmers can study and exploit.

Figure 129: A portable console

This hardware stability is a double-edged sword: the hardware can be really hard tomaster at the beginning, resulting

in some poor-performing games at the beginning of the generation, but when mastered the results are incredible.

This feeds into a cycle that looks like the following:

1. New Generation is introduced

2. Initial confusion, with poor performance and graphics

3. Hardware is mastered and games have great performance/graphics

4. The games become “too big” for the current generation and a new generation must be introduced.

5.1.3 Personal Computer

Personal Computers are another huge part of the video game industry. They are extremely flexible (being general-

purpose machines) but have a huge drawback: their hardware is not the same from one unit to the other. This means

that the programmer needs to use “abstraction layers” to be able to communicate with all the different hardware.

5 A GAME DESIGN DICTIONARY 145



2D Game Development: From Zero To Hero

Figure 130: A personal computer

This compounds with the fact that “abstraction layers” used by the developer (like SDL, SFML or GLFW) are running on

top of other “abstraction layers”, like sound servers, device drivers, etc… which can be littered with bugs themselves.

Just look at how many indirections we have on a modern Linux system (which is usually bundled with PulseAudio):

Game

SDL/SFML/GLFW

PulseAudio Library Layer

PulseAudio Engine

Linux Kernel Drivers

Sound Card

Figure 131: How many abstraction layers are used just for a game to be able to play sounds

This can have performance costs, as well as forcing the programmer to add options to lower graphic settings, reso-

lution and more.

5 A GAME DESIGN DICTIONARY 146



2D Game Development: From Zero To Hero

All of this just to be able to run on as many computers as possible. The upside is that when the computer is really

powerful, you can get great performance and amazing quality, but that’s a rare occasion.

5.1.4 Mobile

One of the most recent platforms game developers work on is right in your pocket: your smartphone.

Figure 132: A smartphone

Today’s smartphones have enough power to run fully-fledged video games, on the go. Sadly the touch screen can

prove to be really uncomfortable to use, unless the game is specially tailored for it.

5.1.5 Web

Another platform that has seen a massive rise in recent times is the Web: with WebGL and WebAssembly, fully-

fledged games (including 3D games) can run on our browser, allowing for massively-multiplayer experiences (like

Agar.io) without the hassle of manual installation or making sure the game is compatible with your platform.

Figure 133: Fully fledged games can run in your browser nowadays

A drawback of the “web approach” is the limited performance that web browsers, WebGL and WebAssembly can give,

as well as the need to download the game before being able to play (and sometimes you may need to re-download

the game if you cleared your browser’s cache).

5 A GAME DESIGN DICTIONARY 147



2D Game Development: From Zero To Hero

5.2 Input Devices

A game needs a way to be interacted with: this “way” is given by input devices. In this section we will take a brief

look at the input devices available in a game.

5.2.1 Mouse and Keyboard

One of the most common input devices, most of the currently available frameworks and engine have support for

input via mouse and keyboard. These input methods are great for visual novels, point and click adventures, FPS/TPS

games and anything that is considered to be “made for PCs”.

5.2.2 Gamepad

One of the classics of input devices, works well with the majority of games: FPS/TPS games may need some aim

assist mechanic in your game. Point and click adventures feel clunky with this input method.

As with Mouse and Keyboard, most of the currently available engines and frameworks support gamepads.

5 A GAME DESIGN DICTIONARY 148



2D Game Development: From Zero To Hero

5.2.3 Touch Screen

With the coming of smartphones, touch screen is a new input device that we have to account for. Touch screens

emulate computer mice well enough, although they lack precision.

The nature of being a mix between an input device and a screen brings a lot of new ways to experience a game

if well done. Many times touch screens are used to simulate game pads: the lack of the tactile feedback given by

buttons makes this simulation clunky and uncomfortable.

Some of the most recent framework and engines support touch screens, although there’s an additional layer of

complexity given by the specific operating system of the smartphone you’re building for.

5.2.4 Dedicated Hardware

Some games require dedicated hardware to work at their best, if at all. Guitars (guitar hero), wheels for racing

games, joysticks for flying simulators, arcade sticks for arcade ports…

Dedicated hardware requires precise programming, and is usually an advanced topic. On PCs many “dedicated input

devices” are recognized as “game pads” and use an “axis” and “buttons” abstraction that makes coding easier.

5.2.5 Other Input Devices

A special mention is deserved for all the input devices that are “general purpose” (as in not “dedicated”) but are

still in a group outside what we saw so far.

5 A GAME DESIGN DICTIONARY 149



2D Game Development: From Zero To Hero

In this group we see gyroscopes, accelerometers (like the Nintendo Wii/Switch JoyCons), sensors, IR, as well as other

exotic hardware that can still be exploited in a video game.

5.3 Game Genres

Let’s analyze some game genres to understand them better and introduce some technical language that may be

useful in writing a Game Design Document.

These genres are quite broad, so a video game is usually a mix of these “classes” (like a strategy+simulation game).

5.3.1 Shooters

Shooters are games that involve… shooting. They can include any kind of projectile (bullets, magic from a fairy,

arrows from a hunter) and can be crossed with any other genre (creating sub-genres in a way), like 2D platformers.

Some of the most known shooter genres are:

• FPS (first person shooters), 3D games where the game is shown from the point of view of the protagonist.

This involves only seeing a HUD and the weapon, instead of the whole character;

• TPS (third person shooters), 3D games where the game is shown from a behind-the-character perspective.

Some show the whole protagonist, while others adopt an over-the-shoulder perspective;

• Top Down Shooters, usually 2D games where you may be piloting a vehicle (space ship, plane, etc…) and

shoot down waves of enemies, in this category we fit arena shooters (like Crimsonland) and space shooters

(like Galaga);

• Side scroller shooters, usually 2D games and platformers, where you control the protagonist and shoot

enemies on a 2D plane, in this category we find games like Metal Slug.

5.3.2 Strategy

Strategy games involve long-term planning and resource control, they are slower games, but can be really intense

when played in competition with other players.

Some of the most popular strategy genres are:

• RTS (real time strategy), where units are controlled in real time;

• Turn-based strategy, where units and resources are managed in turns;

5.3.3 Platformer

5 A GAME DESIGN DICTIONARY 150



2D Game Development: From Zero To Hero

Platformer games involve difficult jumps and precise movement, they can both be 2D and 3D games. A prime

example of platformer games is the Mario series: Mario 1,2,3 for 2D games and Mario 64 for 3D.

5.3.4 RPG

RPGs or “Role Playing Games” are games where you assume the role of a character in a fictional setting. In RPGs

the world is well-defined and usually have some level or class system and quite advanced item management.

RPGs can be either action/adventure, with real-time actions, turn-based or hybrid, where the movement is done in

real time but battles happen in turns. Some prime examples of RPG games are the Legend of Zelda series, as well

as the Final Fantasy series.

5.3.5 MMO

MMO (Massively Multiplayer Online) is a term used for games that have a heavy multiplayer component via the

internet. The most known MMO genre is MMORPGs (Massively Multiplayer Online Role-Playing Games).

5.3.6 Simulation

Simulation games cover a huge variety of games that are created to “simulate reality”, in more or less precise ways.

Among simulation games we can find:

• Racing Games: sometimes more simulative others more arcade-like, racing games simulate the experience

of driving a vehicle, more or less realistic (from modern cars to futuristic nitro-fueled bikes);

• Social Simulation: simulating the interaction between characters, a pioneer on the genre is surely “The

Sims”;

• Farming simulation: simulating the quietude and work in the fields;

• Business simulation: like “game dev tycoon” or “rollercoaster tycoon”;

But there are also other kinds of simulations, like Sim City, where you manage an entire city.

5.3.7 Rhythm Games

Rhythm games are based on the concept of following a music beat as precisely as possible, this can be also used as

a “mechanic” in other types of games.

5 A GAME DESIGN DICTIONARY 151



2D Game Development: From Zero To Hero

Some examples of Rhythm games are “Dance-Dance Revolution” (also known as DDR), as well as more innovative

games like “Crypt of the Necrodancer” (a mix between rhythm game and dungeon crawler).

5.3.8 Visual novels

Visual novels are graphical adventures whose primary objective is “telling a story”, they can be linear or have a

“choose your own path” component. They usually feature multiple endings and hand-crafted still images as artwork.

The more modern versions feature more interactive components and fully-fledged 3D graphics, but what ties the

genre together is usually a “point and click” style of gameplay.

5.3.9 Puzzle games

Puzzle games are centered about making the player think: they can test a lot of problem-solving skills from pattern

recognition, to word completion, to logic.

Some example of puzzle games include Lemmings, Boulder Dash, anymatch-3 game (started with “Shariki”, followed

by “Bejeweled” until the more modern titles for mobile phones), and Tetris.

Puzzle games can involve math (like Sudoku), Physics (like the game “Peggle”), Hidden objects or even programming

(for instance “Shenzen I/O” for “realistic programming”, or “Opus Magnum” for a different approach).

Nothing stops other genres from including puzzle elements, but this small section is dedicated to the games that

feature puzzle elements as their core mechanic.

5.4 Miscellaneous

Here we will talk about some other terms that you may hear in the game development and design world, but that

don’t fit into a specific category.

5.4.1 Emergent Gameplay

Sometimes, when interacting with simple game mechanics, players can give life to complex situations. When that

happens usually we talk about “emergent gameplay”.

Emergent gameplay can take place in open-ended games, where there are many solutions to a situation and none

of them is “preferred by the game”. For instance, we can think of someone guarding a door, there are many ways

5 A GAME DESIGN DICTIONARY 152



2D Game Development: From Zero To Hero

to get through the guard, such as:

• Attacking the guard (and winning);

• Find an alternative path;

• Sneak around the guard to knock them unconscious;

• Find a way to make the guard leave their post;

• …

Random Trivia!

A prime example of a game that leverages emergent gameplay is Minecraft. Players

can either survive, build palaces, build redstone circuits and much more.

5 A GAME DESIGN DICTIONARY 153



Part 2: Project Management



2D Game Development: From Zero To Hero

6 Project Management Basics and tips

Those who plan do better than those who do not plan even though they

rarely stick to their plan.

Winston Churchill

Project management is a very broad topic but I feel that some basics and tips should be covered in this book. Knowing

some project management can save you a lot of headaches and can make the difference between success and a

colossal failure.

6.1 The figures of game design and development

Before delving into the topic at hand, we need to familiarize ourselves with the main figures that are involved in the

process of game design and development, since you’ll probably (if you are the only developer of your game) have

to take upon all their tasks.

6.1.1 Producer/Project Manager

The producer is a figure that has experience in many fields and has an overall view of the project. They essentially

keep the project together.

Their duties are:

• Team Building (and its maintenance too);

• Distributing duties and responsibilities;

• Relations with the media.

Under the term “project manager” you can find different roles, among them:

• Product Manager;

• Assistant Producer;

• Executive producer.

A good project manager will need tools to manage tasks (Like a Kanban Board), as well as tools that promote

communication in the team (Chats, VoIP) and information repositories (having all information in the same place is

6 PROJECT MANAGEMENT BASICS AND TIPS 155



2D Game Development: From Zero To Hero

important!).

6.1.2 Game Designer

The game designer takes care of the game concept, usually (but not only!) working with really specific software,

usually provided by the programmers in the team (like specific level editors).

They design balanced game mechanics, manage the learning curve and take care of level design too.

Under the “Game Designer” term you can find different roles, among them:

• Level Designer;

• World Builder;

• Narrative Designer;

• Quest/Mission Designer.

A good game designer must know mathematics, some scripting and be able to use planning tools (again, our friendly

Kanban Board comes into play) as well as diagram drawing tools.

6.1.3 Writer

Writers are the ones who can help you give your game its own story, but also help with things that are outside the

mere game itself.

6 PROJECT MANAGEMENT BASICS AND TIPS 156



2D Game Development: From Zero To Hero

Some of their jobs include:

• Writing tutorial prompts;

• Writing narration;

• Writing dialogue;

• Writing pieces for the marketing of your game (sometimes known as “Copywriting”).

Under the term of “Writer” you can find more roles, like:

• Editor;

• Narrative Designer;

• Creative Writer.

A good writer must have good language skills, as well as creativity. They must be able to use planning programs

(like everyone, communication is important) as well as writing programs, like LibreOffice/OpenOffice Writer.

6.1.4 Developer

Logic and mathematics are the strong suit of programmers, the people who take care of making the game tick, they

can also have many specializations like:

• Problem Solver

• Game mechanics programmer;

• Controls programmer;

• AI developer;

• Visuals Programmer;

• Networking programmer;

• Physics programmer;

• …

Theymust be familiar with IDEs and programming environments, as well as Source Control Tools (Like Git), knowledge

of game engines like Unity is preferred, but also tied to the kind of game that is made.

6 PROJECT MANAGEMENT BASICS AND TIPS 157



2D Game Development: From Zero To Hero

6.1.5 Visual Artist

In 2D games visual art is as important as in 3D games and good graphics can really boost the game’s quality greatly,

as bad graphics can break a game easily.

Among visual artists we can find:

Both in 2D and 3D games:

• 2D Artists;

• Animators;

• Environment Artists;

• UI Artists/Designers;

• Conceptual Artists.

In 3D games:

• 3D Modelers;

• Texture Artists.

Visual Artists must be knowledgeable in the use of drawing programs, like Krita, GIMP or their commercial counter-

parts.

6 PROJECT MANAGEMENT BASICS AND TIPS 158



2D Game Development: From Zero To Hero

6.1.6 Sound Artist

As with graphics, sound and music can make or break a game. Sound artists may also be musicians, and their task

is to create audio that can be used in a video game, like sound effects, atmospheres or background music.

Under the umbrella of a sound artist, you can find:

• Audio Engineers;

• Game Composers;

• Music Mixers;

• Audio Programmers.

The knowledge of DAW (Digital Audio Workstation) software is fundamental, as well as knowing some so-called

“middlewares”, like FMOD. Another important bit of knowledge is being able to use Audio editors effectively.

6.1.7 Marketing/Public Relations Manager

Even the best game in the world will get no attention without someone who takes care of letting people know about

it. The marketing and public relations manager is responsible for promoting a game through various channels, from

specialized outlets to social media.

Their job include:

6 PROJECT MANAGEMENT BASICS AND TIPS 159



2D Game Development: From Zero To Hero

• developing and executing marketing campaigns;

• creating press releases and other promotional materials;

• managing social media accounts;

• working with journalists and influencers to publicize the game;

• publicizing the game on dedicated trade shows.

6.1.8 Tester

Probably the most important job in a game development team, testing needs people with high attention to detail,

as well as the ability to handle stress well.

Testers are able to find, describe and help you reproduce bugs and misbehaviors of your game.

6.2 Some general tips

6.2.1 Be careful of feature creep

The “it would be cool to…” trap, formally called “feature creep”, is a huge problem in all projects that involve any

amount of passion in them.

Saying “it would be cool to do <insert something here>: let’s implement it!” can spiral out of control and make us

implement new features forever, keeping us from taking care of the basics that make a good game (or make a game

at all).

Try to stick to the basics first, and then eventually expand when your game is already released, if it’s worth it: first

make it work, then make it work well and only in the end make it elegant.

6.2.2 On project duration

When it comes to project management, it’s always tough to gauge the project duration, so it can prove useful to

remember the following phrase:

6 PROJECT MANAGEMENT BASICS AND TIPS 160



2D Game Development: From Zero To Hero

“If you think a project would last a month, you should add a month of time for unforeseen events. After that,

you should add another month for events that you really cannot foresee.”

This means that projects will last at least 3 times the time you foresee.

That may seem a lot like an exaggeration, but unforeseen events happen and they can have a huge impact on the

release of your game. It’s better to err on the side of caution and even delay the release if something goes wrong.

Shigeru Miyamoto said the following:

A delayed game is eventually good, a bad game is bad forever.

so maybe being “abundant” with your time estimates is not that wrong.

6.2.3 Brainstorming: the good, the bad and the ugly

Brainstorming is an activity that involves the design team writing down all the ideas they possibly can (without

caring about their quality yet).

This is a productive activity to perform at the beginning of the game development and design process, but it can be

a huge source of feature creep if done further down the line.

After the initial phase of brainstorming, the team analyzes the ideas and discards the impossible ones, followed by

the ones that are not “as good as they sounded at first”. The remaining ideas can come together to either form a

concept of a video game or some secondary component of it.

In short: brainstorming is a great activity for innovation, but since it’s essentially “throwing stuff at a wall and see

what sticks”.

This activity can sometimes be either unproductive or “excessively productive”: in both cases we end up with nothing

of use in our hands.

6.2.4 On Sequels

In case your game becomes a hit, you will probably think about making a sequel: this is not inherently a bad thing,

but you need to remember some things.

When developing a sequel, you will have to live up to your previous game, as well as the expectations of the players,

and this becomes more and more difficult as the “successful sequels” go on.

Not only a sequel must be “as good or better” than its predecessor, but also it should add something to the original

game, as well as the established lore (if there is any).

Your time and resource management must be top-notch to be able to “bring more with less”, since your need for

resources cannot skyrocket without a very good reason.

Also don’t get caught in the some kind of “sequel disease” where you end up making a sequel just to “milk the

intellectual property”: you will end up ruining the whole series: it may end up being hated by the ones who played

6 PROJECT MANAGEMENT BASICS AND TIPS 161



2D Game Development: From Zero To Hero

the first games, and new players will be discouraged by a series that either overstays its welcome, or has one or

more low-quality sequels.

6.3 Common Errors and Pitfalls

When you are making a new game, it’s easy to feel lost and “out of your comfort zone”, and that’s okay! It’s also

easy to fall into traps and pitfalls that can ruin your experience, here we take a look at the most common ones.

6.3.1 Losing motivation

Sometimes it can happen to lose motivation, usually due to having “too much ambition”: make sure you can develop

the kind of game you want to make, for instance leave multiplayer out of the question (multiplayer games are really

hard and network code can be a real pain to work on). It will just suck up development time, and it isn’t that much

of an important feature anyway (and it can still be implemented later, like it happened in Stardew Valley).

Like in music, many people prefer “mediocrity” to “something great”, so don’t force yourself to innovate: do things

well enough and if the innovative idea comes, welcome it.

If you get tired, take a break, you’re your own boss, and no one is behind you zapping you with a cattle prod: just

focus on making a good overall product and things will go well.

6.3.2 The “Side Project” pitfall

It happens: you have a ton of ideas for games of all kinds, and probably you’ll start thinking:

What’s bad about a small “side project”? I want to change things up a bit…

You will end up having lots of “started projects” and nothing finished, your energy will deplete, things will become

confusing and you won’t know what game you’re working on anymore.

Instead, make a small concept for the new mechanic and try to implement it in your current game, you may find a

new mix that hasn’t been tried before, making your game that much more unique.

6.3.3 Making a game “in isolation”

While making a game you will need to gather some public for it, as well as create some hype around it: making a

game on your own without involving the public is a mistake that deprives you of a huge source of suggestions and

(constructive) criticism (as well as satisfaction, when you manage to get some people interested in your game).

Make your game public, on platforms like itch.io or IndieDB, get feedback and encouragement. Create trailers towards

the end of development, put them on YouTube or Vimeo and if you want to go all out, get in touch with the press (locally

first) and create hype around your product.

6 PROJECT MANAGEMENT BASICS AND TIPS 162



2D Game Development: From Zero To Hero

6.3.4 (Mis)Handling Criticism

Among all the other things that are happening, we also need to handle feedback from our “potential players”, and

this requires quite the mental effort, since we can’t make it “automatic”.

Not all criticism can be classified as “trolling”, and forging our game without listening to any feedback will only mean

that such game won’t be liked by as many people as we would like, maybe for a very simple problem that could

have been solved if only we listened to them.

At the same time, not all criticism is “useful” either, not classifying criticism as “trolling” does not mean that trolling

doesn’t exist, some people will take pride in ruining other people’s mood, either by being annoying and uselessly

critic, or by finding issues that don’t actually exist.

The question you should ask yourself is simple:

Is this criticism I’m receiving constructive? Can it make my game better?

If the answer is no, then you may want to ignore such criticism, but if it is constructive, maybe you want to keep it

in consideration.

6.3.4.1 Misusing of the Digital Millennium Copyright Act

This is what could be considered the apex of mishandling criticism: the usage of DMCA takedowns to quash criticism

towards your game.

Note!

What follows is not legal advice. I am not a lawyer.

If you want to know more (as in quantity and quality of information), contact your

favorite lawyer.

Sadly, mostly in the YouTube ecosystem, DMCA takedowns are often used as a means to suppress criticism and

make video-reviews disappear from the Internet. Useless to say that this is potentially illegal as well as definitely

despicable.

Takedowns according to the DMCA are a tool at your disposal to deal with copyright infringements by people who

steal part (or the entirety of) your work, allowing (in the case of YouTube at the very least) to make the allegedly

infringing material. This should be used carefully and just after at the very least contacting the alleged infringer

privately, also because there is an exception to the copyright rule.

6.3.4.1.1 The Fair Use Doctrine

The so-called “Fair Use” is a limited exception to the copyright law that targets purposes of review, criticism, parody,

commentary, and news reporting, for instance.

The test for “Fair use” has four factors (according to 17 U.S.C. §107):

6 PROJECT MANAGEMENT BASICS AND TIPS 163



2D Game Development: From Zero To Hero

1. The Purpose and character of the use: if someone can demonstrate that their use advances knowledge

or the progress of arts through the addition of something new, it’s probably fair use. This usually is defined

by the question “is the work transformative enough?”

2. The nature of the copyrighted work: For instance, facts and ideas are not protected by copyright, but

only their particular expression or fixation is protected. Essentially you can’t really sue someone for making

a game very similar to yours (For instance making a 2D sidescrolling, run’n’gun platformer).

3. The amount and substantiality of the portion used in relation to the work as a whole: If someone

uses a small part (compared to the whole) of the work, and if that part is not really substantial, then it’s

probably fair use.

4. The effect on the potential market for the copyrighted work: this defines if the widespread presence

of the “allegedly infringing use” can hinder on the copyright owner’s ability to exploit (earn from) their original

work.

There can also be some additional factors that may be considered, but these four factors above are usually enough

to decide over the presence (or absence) of fair use.

6.3.4.1.2 The “Review Case”

Let’s take a simple example: a video-review on our brand new video game, that takes some small pieces of gameplay

(totaling about 5 minutes), on video and comments on the gameplay, sound and graphics. A very common scenario

with (I hope) an unsurprising turnout.

Let’s take a look at the first point: the purpose is criticism, the review brings something new to the table (essentially

it is transformative): someone’s impression and comments about the commercial work.

Second point: the game is an interactive medium, while the review is non-interactive by nature, the mean of trans-

mission is different.

Third point: considering the average duration of 8 to 10 hours of a video game, 5 minutes of footage amounts for

around 0.8% to 1% of the total experience, that’s a laughable amount compared to the total experience.

Fourth Point: this is the one many people may get wrong. A review can have a huge effect on the market of a

copyrighted work (a bad score from a big reviewer can result in huge losses), but that’s not really how the test

works. The fourth test can usually be answered by the following questions:

What’s the probability that someone would buy (or enjoy for free) the work from the alleged infringer, instead

than from me (the copyright owner)?

This is called “being a direct market substitute” for the original work. The other question is:

Is there a potential harm (other than market substitution) that can exist?

This usually is related to licensing markets. And here lies the final nail on the coffin: there is no direct market

substitution and courts recognize that certain kinds of market don’t negate fair use, and reviews are among those

6 PROJECT MANAGEMENT BASICS AND TIPS 164



2D Game Development: From Zero To Hero

kinds of market. In essence Copyright is not a shield against adverse criticism.

6.3.5 Not letting others test your game

This is a common mistake when you are focused on making the game: using your own skill as a “universal measure”

for the world’s skill level. You may be an unknown master at 2D platformers, and as such what is “mildly difficult”

for you may be “utterly impossible” for the average player. Or the opposite.

Try to keep the challenge constant through the levels, applying the usual slight upwards curve in difficulty that most

games have (or check the section about difficulty curves for some ideas), and let others test your game.

A beta version with feedback capabilities (or just a beta version and a form or email address can do the trick too) is

pure gold when it comes to understanding what your players think about the game’s challenge level.

Remember: when a level is (perceived as unfairly) too hard, players will stop playing the game.

6.3.6 Being perfectionist

If you are called “perfectionist” by your friends, that should be a red flag in your game development process from

the very beginning.

Finding yourself honing the game over and over, allocating countless hours (that always feel as “not enough”) into

making the game “better”, will end up just sabotaging the development process itself.

Instead try to prefer a more “scientific approach”, where you study your game’s shortcomings (with the help of some

testers, or “friend-made-tester”), order them by their “effort vs improvement” ratio and start with those who require

the lowest effort compared to the improvements they bring.

       Quality I

       Effort

1. Understanding what needs to be improved
requires effort without giving much result

2. After studying the situation,
working on small things can give
great quality improvements
without much effort.

3. After a certain point, we have
diminishing returns with increasing effort.

Figure 134: How to approach improvements on your game

6 PROJECT MANAGEMENT BASICS AND TIPS 165



2D Game Development: From Zero To Hero

You can see that you can get really good returns for relatively little effort, but if you’re a perfectionist, you may want

to push forward and put more and more hours, with diminishing returns.

This means that when you have:

• Good Visuals and Good Audio

• Working Gameplay

• A challenge that lasts the test of time

• The testing phase completed

You have a complete product. Release it. Updating it is very easy these days, and maybe that will give you the

mental energy to undertake a new game. Maybe a sequel even?

6.3.7 Using the wrong engine

The game engine is one of the most important decisions you can take at the beginning of your game development

journey. Realizing that you used the wrong engine after months of development can be a huge setback, as well as

a “black hole” for your motivation.

Don’t trust market hype over an engine, and don’t trust the vendor’s promises either.

Does the game engine have the features you will need already? No? Then your money should stay where it is, and

you should look somewhere else.

If such engine’s producer is promising the feature you want in future, don’t trust it, that version may come, or it may

never come at all. If you bought the engine and such feature won’t ever be there, your money won’t come back.

6.4 Software Life Cycle Models

When talking about project management (in itself or in the broader field of Software Engineering) it is really useful

to talk about some guideline models that can be used to manage your project.

6.4.1 Iteration versus Increment

Before getting to the models, we need to discuss the difference between two terms that are often used interchange-

ably: “iteration” and “increment”.

Iteration is a non-deterministic process, during an iteration you are revisiting what you have already done, and

such revisiting can include an advancement or a regression. While iterating, you have no idea when you will finish

your job.

Increment is deterministic instead, with increments you are proceeding by additions over a base. Every increment

creates a “new base” for the next increments, and increments are numbered and limited, giving you an idea of when

you have to finish your job.

6 PROJECT MANAGEMENT BASICS AND TIPS 166



2D Game Development: From Zero To Hero

6.4.2 Waterfall Model

The Waterfall model, also known as “sequential model” is the simplest one to understand, easily repeatable (in

different projects) and is composed by phases that are strictly sequential, which means:

• There is no parallelism;

• There is no overlap between phases;

• When a phase is completed, you cannot go back to it.

Analysis Planning Production Maintenance

Figure 135: Diagram of the waterfall life cycle model

This makes the Waterfall life cycle model extremely rigid, everything needs to be carefully analyzed and documented

(sometimes people define this model “document-driven”) and the coding is done only in its final phases.

In order to have a good result, this model requires quantifying some metrics (time spent, costs, …) and such quan-

tification heavily relies on the experience of the project manager and the administrators.

6.4.3 Incremental Model

When a project of a certain size is involved, it’s a bad idea to perform the so-called “big-bang integration” (inte-

grating all the components together). Such approach would make troubleshooting a nightmare, so it’s advisable to

incrementally integrate the components.

The Incremental Model allows to have a “high-level analysis and planning”, after that the team decides which features

should be implemented first. This way the most important features are ready as soon as possible and have more

time to become stable and integrate with the rest of the software.

Analysis

High-level Planning

Detail Planning

Production

Release 1
Release 2
..........
Release n

The number of iterations
is fixed

Figure 136: Diagram of the incremental life cycle model

This model can make use of strictly sequential phases (detail planning -> release -> detail planning -> release …)

or introduce some parallelism (for instance planning and developing frontend and backend at the same time).

6 PROJECT MANAGEMENT BASICS AND TIPS 167



2D Game Development: From Zero To Hero

As seen from the diagram, the high-level analysis and planning are not repeated, instead the detail planning and

release cycle for a well-defined number of iterations, and on each iteration we will have a working release or proto-

type.

6.4.4 Evolutionary Model

It’s not always possible to perfectly know the outline of a problem in advance, that’s why the evolutionary model

was invented. Since needs tend to change with time, it’s a good idea to maintain life cycles on different versions of

your software at the same time.

High Level
Description

Specification

Development

Validation

Initial
Version

Final
Version

Intermediate
Versions

Figure 137: High-level diagram of the evolutionary life cycle model

Adding a way to implement the feedback you get from your customers and stakeholders completes the micro-

managed part of the life cycle model, each time feedback and updates are implemented, a new version is released.

Analysis

Planning

Detail Planning

Production and Release

Delivery

Customer Feedback

Incorporation
of Feedback

Figure 138: Diagram of the evolutionary life cycle model

6.4.5 Agile Software Development

Agile Software Development was born as a reaction to the excessive rigidity of the models we’ve seen so far. The

basic principles of Agile Software Development are presented at the http://agilemanifesto.org website, but we will

shortly discuss them below.

6 PROJECT MANAGEMENT BASICS AND TIPS 168

http://agilemanifesto.org


2D Game Development: From Zero To Hero

• Rigid rules are not good;

• A working software is more important than a comprehensive documentation;

• Seek collaboration with the stakeholder instead of trying to negotiate with them;

• Responding to change is better than following a plan

• Interactions and individuals are more important than processes and tools.

Obviously not everything that shines is actually gold, there are many detractors of the Agile model, bringing on the

table some criticism that should be noted:

• The agile way of working entails a really high degree of discipline from the team: the line between “flexibility”

and “complete lack of rules” is a thin one;

• Software without documentation is a liability more than an asset: commenting code is not enough - you need

to know (and let others know) the reason behind a certain choice;

• Without a plan, you can’t estimate risks and measure how the project is coming along;

• Responding to change can be good, but you need to be aware of costs and benefits such change and your

response entail.

6.4.5.1 User Stories

Agile models are based on “User Stories”, which are documents that describe the problem at hand.

Such documents are written by talking with the stakeholder/customer, listening to them, actively participating in

the discussion with them, proposing solutions and improvements actively.

A User Story also defines how we want to check that the software we are producing actually satisfies our customer.

6.4.5.2 Scrum

The term “scrum” is taken from the sport of American Football, where you have an action that is seemingly product

of chaos but that instead hides a strategy, rules and organization.

Let’s see some Scrum terminology:

• Product Backlog: This is essentially a “todo list” that keeps requirements and features our product must

have;

• Sprint: Iteration, where we choose what to do to create a so-called “useful increment” to our product. Each

Sprint lasts around 2 to 4 weeks and at the end of each sprint you obtain a version of your software that can

be potentially sold to the consumer;

• Sprint Backlog: Essentially another “todo list” that keeps the set of user stories that will be used for the

next sprint.

As seen from the terminology, the Scrum method is based on well-defined iterations (Sprints) and each sprint is

composed by the following phases:

6 PROJECT MANAGEMENT BASICS AND TIPS 169



2D Game Development: From Zero To Hero

• Sprint Planning: You gather the product backlog and eventually the previous sprint backlogs and decide

what to implement in the upcoming sprint;

• Daily Scrum: A daily stand-up meeting that lasts around 15 minutes where a check on the daily progress is

done;

• Sprint Review: After the sprint is completed, we have the verification and validation of the products of the

sprint (both software and documents);

• Sprint Retrospective: A quality control on the sprint itself is done, allowing for continuous improvement

over the way of working.

6.4.5.2.1 Criticisms to the Scrum approach

The Scrum approach can quickly become chaotic if User Stories and Backlogs are not well kept and clear. Also, no

matter how short it can be, the Daily Scrum is still an invasive practice that interrupts the workflow and requires

everyone to be present and ready.

6.4.5.3 Kanban

Kanban is an Agile Development approach taken by the scheduling system used for lean and just-in-time manufac-

turing implemented at Toyota.

The base of Kanban is the “Kanban Board” (sometimes shortened as “Kanboard”), where plates (also called “cards”

or “tickets”) are moved through swimlanes that can represent:

• The status of the card (To Do, Doing, Testing, Done)

• The Kind of Work (Frontend, Backend, Database, …)

• The team that is taking care of the work

The board helps with organization and gives a high-level view of the work status.

Backlog In Progress Testing Done Blocked

Fix Bug #1234

Implement New Bugs

Fix Bug #159 Antigravity Engines World Domination

Figure 139: Example of a Kanban Board

6.4.5.4 ScrumBan

ScrumBan is a hybrid approach between Scrum and Kanban, mixing the Daily Scrum and Sprint Approach with the

Kanban Board.

6 PROJECT MANAGEMENT BASICS AND TIPS 170



2D Game Development: From Zero To Hero

This approach is usually used during migration from a Scrum-Based approach to a purely Kanban-based approach.

6.4.6 Lean Development

Lean development tries to bring the principles of lean manufacturing into software development. The basis of lean

development is divided in 7 principles:

• Remove Waste: “waste” can be partial work, useless features, waiting, defects, work changing hands…

• Amplify Learning: coding is seen as a learning process and different ideas should be tested on the field,

giving great importance to the learning process;

• Decide late: the later you take decisions, the more assumptions and predictions are replaced with facts, Also

strong commitments should happen as late as possible, as they will make the system less flexible;

• Deliver early: technology evolves rapidly, and the one that survives is the fastest. If you can deliver your

product free from defects as soon as possible you will get feedback quickly, and get to the next iteration

sooner;

• Empower the team: managers are taught to listen to the developers, as well as provide suggestions;

• Build integrity in: the components of the system should work well together and give a cohesive experience,

giving the customer and impression of integrity;

• Optimize the whole: optimization is done by splitting big tasks into smaller ones which helps finding and

eliminating the cause of defects.

6.4.7 Where to go from here

Obviously the models presented are not set in stone, but are “best practices” that have been proven to help with

project management, and not even all of them.

Nothing stops you from taking elements of a model and implement them into another model. For example you could

use an Evolutionary Model with a Kanban board used to manage the single increment.

6.5 Version Control

When it comes to managing any resource that is important to the development process of a software, it is vitally

important that a version control system is put in place to manage such resources.

Code is not the only thing that we may want to keep under versioning, but also documentation can be subject to it.

Version Control Systems (VCS) allow you to keep track of edits in your code and documents, know (and blame) users

for certain changes and eventually revert such changes when necessary. They also help saving on bandwidth by

uploading only the differences between commits andmake your development environmentmore robust (for instance,

by decentralizing the code repositories).

The most used Version Control system used in coding is Git, it’s decentralized and works extremely well for tracking

text-based files, like code or documentation, but thanks to the LFS extension it is possible for it to handle large files

efficiently.

6 PROJECT MANAGEMENT BASICS AND TIPS 171



2D Game Development: From Zero To Hero

Figure 140: An example screen from Git, a version control system

Other used version control systems are Mercurial and SVN (subversion).

Another useful feature of many version control systems are remote sources, which allow you to upload and synchro-

nize your repositories with a remote location (like GitHub, GitLab or BitBucket for instance) and have it safe on the

cloud, where safety by redundancy is most surely ensured.

6.6 Metrics and dashboards

During development you need to keep an eye on the quality of your project, that’s when you need a project dash-

board: but before that, you need to decide what your quality metrics are, that means the measurements that

define if your project is “up to par” with what you expect or not.

6.6.1 SLOC

This is probably the simplest metric out there: The “Source Line of Code” (SLOC). It is used to measure the size of a

program by counting its lines of code. Once Bill Gates said the following:

Measuring programming progress by lines of code is like measuring aircraft building progress by weight.

An aircraft must be lightweight and robust, and being heavier than necessary will stop it from flying. The same

reasoning should be applied here: a longer source code doesn’t mean a better product.

It is important to strike a balance between “readability” and “brevity”: your code should be short, but being source

code, it is still meant for humans to read, so readability matters more than brevity.

Usually the SLOC metric is used to give a “order of magnitude” impression of the program: considering 2 programs

that do exactly the same thing, one is 10.000 lines of code, the other one is 100.000, you may start to suspect that

the bigger program is more (probably uselessly) complex and less maintainable.

6.6.2 Cyclomatic Complexity

More precisely called “McCabe’s Cyclomatic Complexity”, this metric defines the number of linearly independent

paths through a program’s source code: the higher the metric, the higher is the number of paths a piece of code

can take in its elaboration.

This means that a higher number of paths takes into account a higher number of conditions and decisions and when

such number becomes too high, the code becomes hard to maintain.

6 PROJECT MANAGEMENT BASICS AND TIPS 172



2D Game Development: From Zero To Hero

The maximum complexity suggested is 10, although sometimes it’s good to relax such metric to a maximum of 15.

When the cyclomatic complexity becomes higher than the maximum value, it is suggested to split the module into

smaller, more maintainable modules.

Your IDE, if advanced enough, should already be able to warn you of a high cyclomatic complexity.

Pitfall Warning!

Be mindful that cyclomatic complexity may have issues of “over-estimation” or “under-

estimation”, depending on a case-by-case basis. McCabe’s cyclomatic complexity is

far from a “silver bullet” that will suit all your needs, but as all other metrics, it can

give a pointer over where refactoring may be necessary.

6.6.2.1 How cyclomatic complexity is calculated

Advanced Wizardry!

This section contains the technical explanation on how to calculate cyclomatic com-

plexity. If you’re not interested in this, feel free to gloss over this section.

As people say, an example is worth a thousandwords, so let’s take the following UML activity diagram, that represents

a simple program (I made it a bit more complex for the sake of demonstration).

a=input()

a == 0yes no

b = "zero" a % 2 == 0yes no

b = "even" b = "odd"

return b

Figure 141: UML of the program which we’ll calculate the cyclomatic complexity of

6 PROJECT MANAGEMENT BASICS AND TIPS 173



2D Game Development: From Zero To Hero

First of all, we need to convert it into the corresponding flow diagram, which usually means eliminating the start

nodes and merge nodes used by UML. The result should look something like the following:

a=input()

a == 0

b='zero' a % 2 == 0

return b

b='even' b='odd'

Figure 142: Flow diagram of the program we’ll calculate the cyclomatic complexity of

Now we need to count 3 things:

• The number of “nodes”: that is the number of boxes and diamonds in our flow diagram. In our case it is 7.

• The number of “edges”: that is the number of arrows that connect the nodes in our flow diagram. In our case

it is 8.

• The number of “exit points”: usually that is the number of stop nodes in our UML diagram, in our flow diagram

it’s the number of return statements. In our case it is 1.

Now we need to apply the following formula: C = E −N + 2 · P .

This formula can be explained as follows:

Cyclomatic Complexity = Edges − Nodes + 2 · Exit Points

In our case we have: C = 8− 7 + 2 · 1 = 3

Usually a complexity lower than 15 is considered OK, but also the lower the better.

6 PROJECT MANAGEMENT BASICS AND TIPS 174



2D Game Development: From Zero To Hero

6.6.3 Code Coverage

When you have a test suite, you may already be thinking about a metric that tells you how much of your code is

tested. Well, here it is: the code coverage metric tells you what percentage of your code base has been run when

executing a test suite.

That is both the useful and damaging part of this metric: code coverage doesn’t tell you how well your code is

tested, just how much code was executed, so it’s easy to incur into what I like to call “incidental coverage”: the

code coverage presents a higher value, when the code is merely “executed” and not thoroughly “tested”.

Code coverage is split in many “sub-sets”, like:

• Statement Coverage: how many statements of the program are executed;

• Branch Coverage: defines which branches (as in portions of the if/else and “switch” statements) are exe-

cuted;

• Function Coverage: how many functions or subroutines are called.

This is also why it’s better to prepare unit tests first, and delay the integration tests for a while.

To know more about those terms, head to the testing section.

6.6.4 Code Smells

Code Smells is a blanket term representing all the common (and thus known)mistakes done in a certain programming

language, as well as bad practices that can be fixed more or less easily.

Some of these smells can be automatically detected by static analysis programs (sometimes called Linters), others

may require dynamic execution, but all code smells should be solved at their root, since they usually entail a deeper

problem.

Among code smells we find:

• Duplicated Code;

• Uncontrolled Side Effects;

• Mutating Variables;

• God Objects;

• Long Methods;

• Excessively long (and thus complex) lines of code.

6.6.5 Coding Style infractions

When you are collaborating with someone, it is absolutely vital to enforce a coding style, so that everyone in the

team is able to look at everyone else’s code without having to put too much effort into it.

Coding style can be enforced via static analysis tools, when properly configured.

6 PROJECT MANAGEMENT BASICS AND TIPS 175



2D Game Development: From Zero To Hero

Counting (automatically) the number of coding style infractions can help you estimate how much effort working on

the code is necessary, thus you would be able to foresee slowdowns in the development process.

6.6.6 Depth of Inheritance

Some people say that inheritance is evil and should be avoided, some other say it’s good. As with all things, in

medio stat virtus (virtue stands in the middle), sometimes inheritance is better left where it is, other times its usage

is necessary for things to make sense.

The depth of inheritance metric tells us how deep the inheritance hierarchy is, thus this metric will tell the us the

strength of one of the possible dependency types. The deeper the inheritance, the more dependencies we have,

which means that we have more classes that, if edited, will change the behavior of the “children classes”.

It’s better having a short inheritance depth, (although it’s not necessarily wrong) having a longer chain of dependen-

cies might mean we have a structural problem, where some classes are “too generic” and at the top of the hierarchy

we have some kind of “universal object”.

6.6.7 Number of methods / fields / variables

Let’s talk numbers: having too many methods or fields in a class can be an indicator of a so-called “god object”:

an object that has too many responsibilities under its wing (does too many things), this is a breach of the single

responsibility principle and should be avoided.

We can fix this by splitting the class into smaller classes, each with its own single responsibility.

A high number of local variables instead may point to a complexity issue: your algorithm may be more complex than

needed, or needs to be split into different functions.

6.6.8 Number of parameters

This metric is specific for functions, when a function has a lot of parameters, it’s harder to call and harder to under-

stand. Functions should have no more than 5 parameters in most cases, more and it will be complex.

Some automated tools in your IDE may be able to warn you in case methods and functions have too many parame-

ters.

To solve this issue, you may need to review the function (maybe it has too many responsibilities?) or pass a so-called

“complex structure” to it (thus merging all the parameters into one).

6.6.9 Other metrics

The metrics listed above are not the only ones available to you, some IDEs have aggregated metrics (like the “main-

tainability index” in Visual Studio), while there may be other metrics you want to measure, some follow:

• Lead Time: Time elapsed between the start and end of a process (may be a ticket, or a task);

• MTBF: (Mean Time Before Failure) represents the mean time before the software crashes;

• Crash Rate: The number of times a software crashes, over the number of times it’s used.

6 PROJECT MANAGEMENT BASICS AND TIPS 176



2D Game Development: From Zero To Hero

6 PROJECT MANAGEMENT BASICS AND TIPS 177



2D Game Development: From Zero To Hero

7 Writing a Game Design Document

If you don’t know where you are going. How can you expect to get there?

Basil S. Walsh

One of the most discussed things in the world of Game Development is the so-called “GDD” or “Game Design

Document”. Some say it’s a thing of the past, others swear by it, others are not really swayed by its existence.

Being an important piece of any software development process, in this book we will talk about the GDD in a more

flexible way.

7.1 What is a Game Design Document

The Game Design Document is a Body Of Knowledge that contains everything that is your game, and it can take

many forms, such as:

• A formal design document;

• A Wiki[g];

• A Kanboard[g];

• A collection of various files, including spreadsheets.

The most important thing about the GDD is that it contains all the details about your game in a centralized and

possibly easy-to-access place.

It is not a technical document, but mostly a design document, technical matters should be moved to a dedicated

“Technical Design Document”.

7.2 Possible sections of a Game Design Document

Each game can have its own attributes, so each Game Design Document can be different, here we will present some

of the most common sections you can include in your own Game Design Document.

7.2.1 Project Description

This section is used to give the reader a quick description of the game, its genre (RPG, FPS, Puzzle,…), the type of

demographic it covers (casual, hardcore, …). Additional information that is believed to be important to have a basic

understanding of the game can be put here.

This section should not be longer than a couple paragraphs.

A possible excerpt of a description could be the following:

This game design document describes the details for a 2D side scrolling platformer game where the player

makes use of mechanics based on using arrows as platforms to get to the end of the level.

The game will feature a story based on the central America ancient culture (Mayan, Aztec, …).

The name is not defined yet but the candidate names are:

7 WRITING A GAME DESIGN DOCUMENT 178



2D Game Development: From Zero To Hero

7.2.2 Characters

If your game involves a story, you need to introduce your characters first, so that everything that follows will be

clear.

A possible excerpt of a characters list can be the following:

Ohm is the main character, part of the group called “The Resistance” and fights for restoring the electrical

order in the circuit world.

Fad is the main side character, last survivor and heir of the whole knowledge of “The Capacitance” group.

Its main job is giving technical assistance to Ohm.

Gen. E. Rator is the main antagonist, general of “The Reactance” movement, which wants to conquer the

circuit world.

This can be a nice place where to put some character artwork.

If your game does not include a story, you can just avoid inserting this section altogether.

7.2.3 Storyline

After introducing the characters, it’s time to talk about the events that will happen in the game.

An example of story excerpt can be the one below:

It has been 500 mega-ticks that the evil Rator and the reactance has come to power, bringing a new era of

darkness into the circuit world.

After countless antics by the evil reactance members, part of the circuit world’s population united into what

is called “The Resistance”.

Strong of thousands of members and the collaboration of the Capacitance, the resistance launched an attack

against the evil reactance empire, but the empire stroke back with a carpet surcharge attack, decimating

the resistance and leaving only few survivors that will be tasked to rebuild the resistance and free the world

from the reactance’s evil influence.

This is when a small child, and their parents were found. The child’s name, Ohm, sounded prophetic of a

better future of the resistance.

And this is where our story begins.

As with the Characters section, if your game does not include a story, you can just skip this section.

7.2.3.1 The theme

When people read the design document, it is fundamental that the game’s theme is quickly understood: it can be

a comedy-based story, or a game about hardships and fighting for a better future, or maybe it is a purely fantastic

game based on ancient history…

Here is a quick example:

7 WRITING A GAME DESIGN DOCUMENT 179



2D Game Development: From Zero To Hero

This is a game about fighting for a better future, dealing with hardships and the deep sadness you face when

you are living in a world on the brink of ruin.

This game should still underline the happiness of small victories, and give a sense of “coziness” in such small

things, even though the world can feel cold.

If you feel that this section is not relevant for your game, you can skip it.

7.2.3.2 Progression

After defining the story, you should take care of describing how the story progresses as the player furthers their

experience in a high-level fashion.

An example:

The game starts with an intro where the ruined city is shown to the player and the protagonist receives their

magic staff that will accompany them through the game.

The first levels are a basic tutorial on movement, where the shaman teaches the player the basic movement

patterns as well as the first mechanic: staff boosting. Combat mechanics are taught as well.

After the tutorial has been completed, the player advances to the first real game area: The stone jungle.

…

7.2.4 Levels and Environments

In this section we will define how levels are constructed and what mechanics they will entail, in detail.

We can see a possible example here:

The First Level (Tutorial) is based in a medieval-like (but adapted to the center-America theme) training camp,

outside, where the player needs to learn jumping, movement and fight straw puppets. At the end of the basic

fighting and movement training, the player is introduced to staff boosting which is used to first jump to a

ledge that is too high for a normal jump, and then the mechanic is used to boost towards an area too far

forward to reach without boosting.

…

Some level artwork can be included in this section, to further define how the levels will look and feel.

7.2.5 Gameplay

This section will be used to describe your gameplay. This section can become really long, but do not fear, as you

can split it in meaningful sections to help with organization and searching.

7.2.5.1 Goals

Why is the player playing your game?

7 WRITING A GAME DESIGN DOCUMENT 180



2D Game Development: From Zero To Hero

This question should be answered in this section. Here you insert the goals of your game, both long and short term.

An example could be the following:

Long Term Goal: Stop the great circuit world war

Optional Long Term Goal: Restore the circuit world to its former glory.

Short Term Goals:

• Find the key to the exit

• Neutralize Enemies

• Get to the next level

7.2.5.2 Game Mechanics

In this section, you describe the core game mechanics that characterize the game, extensively. There are countless

resource on how to describe game mechanics, but we’ll try to add an example here below.

The game will play in the style of the well-known match-3 games. Each match of 3 items will add some points

to the score, and new items will “fall” from a randomly chosen direction every time.

Every time an “L” or a “T” match is performed, a special item of a random color will be generated, when a

match including this item is made, all the items in the same row and column will be deleted and bonuses will

be awarded.

Every time a match with 4 items in a row is performed, a special item of a random color will be generated,

when a match including such item is made, all items in a 3x3 grid centered on the item will be deleted and

bonuses will be awarded.

Every time a match with 5 items in a row is performed, a special uncolored item will be generated, this can

be used as a “wildcard” for any kind of match.

In case the 5-item special is matched with any other special item, the whole game board will be wiped and

a bonus will be awarded.

…

7.2.5.3 Skills

Here you will describe the skills that are needed by the users in order to be able to play (and master) your game.

This will be useful to assess your game design and eventually find if there are some requirements that are too high

for your target audience; for instance asking a small child to do advanced resource management could be a problem.

This will also help deciding what the best hardware to use your game on could be, for instance if your game requires

precise inputs for platforming then touch screens may not be the best option.

Here’s an example of such section:

7 WRITING A GAME DESIGN DOCUMENT 181



2D Game Development: From Zero To Hero

The user will need the following skills to be able to play the game effectively:

• Pressing Keyboard Buttons or Joypad Buttons

• Puzzle Solving (for the “good ending” overarching puzzle)

• Timing inputs well (for the sections with many obstacles)

…

7.2.5.4 Items/Powerups

After describing the basic game mechanics and the skills the user needs to master to be able to play the game

effectively, you can use this section to describe the items and powerups that can be used to alter the core gameplay.

For example:

The player can touch a globular light powerup to gain invincibility, every enemy that will touch the player

will get automatically killed. The powerup duration is 15 seconds.

Red (incendiary) arrows can be collected through the levels, they can get shot and as soon as they touch the

ground or an enemy, the burst into flames, similarly to a match.

…

In this section you describe all items that can be either found or bought from an in-game store or also items derived

from micro-transactions. In-game currency acquisition should be mentioned here too, but further detailed in the

monetization section.

7.2.5.5 Difficulty Management and Progression

This section can be used to manage how the game gets harder and how the player can react to it. This will expand

on game mechanics like leveling and gear.

This section is by its own nature quite subjective, but describing how the game progresses helps a lot during the

tighter parts of development.

Below a possible example of this section:

The game will become harder by presenting tougher enemies, with more armor, Health Points and attack. To

overcome this difficulty shift, the player will have to create defense strategy and improve their dodging, as

well as leveling up their statistics and buy better gear from the towns’ shops.

In the later levels, enemies will start dodging too, and will also be faster. The player will need to improve

their own speed statistic to avoid being left behind or “kited” by fast enemies.

As the game progresses, the player will need to acquire heavy weapons to deal with bigger bosses, as well

as some more efficient ranged weapons to counteract ranged enemies.

…

This section is good if you want to talk about unlocking new missions/maps/levels too.

7 WRITING A GAME DESIGN DOCUMENT 182



2D Game Development: From Zero To Hero

7.2.5.6 Losing Conditions

Many times we focus so much on how the player will get to the end of the game that we absolutely forget how the

player can not get to the end of the game.

Losing conditions must be listed and have the same importance of the winning conditions, since they add to the

challenge of the game itself.

A possible example of how a “losing conditions” section could be written is the following:

The game can be lost in the following ways:

• Losing all the lives and not “continuing” (Game Over)

• Not finding all the Crystal Oscillators (Bad Ending)

An interesting idea could be having an “endings” section inside your game, where all endings (both good, bad and

neutral) are listed, encouraging the player to pull themselves out from the “losing condition” that is a bad ending.

7.2.6 Graphic Style and Art

Here we describe the ideas on how the game will look like. Describing the graphic style and medium.

Here is a possible example of the game:

This is a 2D side scroller with a dark theme, the graphics should look gloomy and very reminiscing of a circuit

board.

The graphical medium should be medium-resolution pixel art, allowing the player’s imagination to “fill in” the

graphics and allowing to maintain a “classic” and “arcade” feeling.

…

7.2.7 Sound and Music

Sadly, in way too many games, music and sound is an afterthought. A good soundtrack and sound effect can really

improve the immersion, even in the simplest of games.

In this section we can describe in detail everything about Music and Sound Effects, and if the section becomes hard

to manage, splitting it in different sub-sections could help organization.

Music should be based on the glitch-hop style, to complement the electronic theme. 8 or 16-bit style sounds

inside the score are preferable to modern high-quality samples.

Sound effects should appeal to the 8 or 16-bit era.

Lots of sound effects should be used to give the user positive feedback when using a lever to open a new

part of the level, and Extra Lives/1UP should have a jingle that overrides the main music.

7 WRITING A GAME DESIGN DOCUMENT 183



2D Game Development: From Zero To Hero

7.2.8 User Interface

In this section we will describe everything that concerns the User Interface: menus, HUD, inventories and everything

that will contribute to build the user experience that is not strictly tied to the gameplay.

This is especially important in games that make heavy use of menus, like turn-based strategy games or survival

games where inventory management can be fundamental.

Let’s see an example of how this section can be written:

The game will feature a cyberpunk-style main menu, looking a lot like an old green-phosphor terminal but

with a touch of futurism involved. The game logo should be visible on the left side, after a careful conversion

into pixel-art. On the right, we see a list of buttons that remind old terminal-based GUIs. On the bottom of

the screen, there should be an animated terminal input, for added effect.

Every time a menu item is highlighted or hovered by the mouse, the terminal input will animate and write a

command that will tie to the selected menu voice, such as:

• Continue Game: ./initiate_mission.bin -r

• Start Game: ./initiate_mission.bin --new

• Options: rlkernel_comm.bin --show_settings

• Exit: systemcontrol.bin --shutdown

The HUD display should remind a terminal, but in a more portable fashion, to better go with the “portability”

of a wrist-based device.

It’s a good idea to add some mock designs of the menu in this section too.

7.2.9 Game Controls

In this section you insert everything that concerns the way the game controls, eventually including special periph-

erals that may be used.

This will help you focusing on better implementing the input system and limit your choices to what is feasible and

useful for your project, instead of just going by instinct.

Below, a possible way to write such section

The game will control mainly via mouse and keyboard, using the mouse to aim the weapon and shoot and

keyboard for moving the character.

Alternatively, it’s possible to connect a twin-stick gamepad, where the right stick moves the weapon crosshair,

while the left stick is used to move the character, one of the back triggers of the gamepad can be configured

to shoot.

If the gamepad is used, there will be a form of aim assistance can be enabled to make the game more

accessible to gamepad users.

7 WRITING A GAME DESIGN DOCUMENT 184



2D Game Development: From Zero To Hero

7.2.10 Accessibility Options

Here you can add all the options that are used to allow more people to access your game, in more ways than you

think.

Below, we can see an example of many accessibility options in a possible game.

The game will include a “colorblind mode”, allowing the colors to be colorblind-friendly: such mode will

include 3 options: Deuteranopia, Tritanopia and Monochromacy.

Additionally, the game will include an option to disable flashing lights, making the game a bit more friendly

for people with photosensitivity.

The game will support “aim assistance”, making the crosshair snap onto the enemy found within a certain

distance from the crosshair.

In order to assist people who have issues with the tough platforming and reaction times involved, we will

include the possibility to play the game at 75%, 50% and 25% speed.

7.2.11 Tools

This section is very useful for team coordination, as having the same toolkit prevents most of the “works for me”

situations, where the game works well for a tester/developer while it either crashes or doesn’t work correctly for

others.

This section is very useful in case we want to include new people in our team and quickly integrate them into the

project.

In this section we should describe our toolkit, possibly with version numbers included (which help reducing incom-

patibilities), as well as libraries and frameworks. The section should follow the trace below:

The tools and frameworks used to develop the game are the following:

Pixel Art Drawing: Aseprite 1.2.13

IDE: Eclipse 2019-09

Music Composition: Linux Multimedia Studio (LMMS) 1.2.1

Map and level design: Tiled 1.3.1

Framework: SFML 2.5.1

Version Control: Git 2.24.0 and GitLab

7.2.12 Marketing

This section allows you to decide how to market the game and have a better long-term plan on how to market your

game to your players.

Carefully selecting and writing down your target platforms and audience allows you to avoid going off topic when it

comes to your game.

7 WRITING A GAME DESIGN DOCUMENT 185



2D Game Development: From Zero To Hero

7.2.12.1 Target Audience

Knowing who is your target audience helps you better suit the game towards the audience that you are actually

targeting.

Here is an example of this section:

The target audience is the following:

Age: 15 years and older

Gender: Everyone

Target players: Hardcore 2D platformer fans

7.2.12.2 Available Platforms

Here you describe the launch platforms, as well as the platforms that will come into the picture after the game

launched. This will help long term organization.

Here is an example of how this section could look:

Initially the game will be released on the following platforms:

• PC

• Playstation 4

After launch, we will work on the following ports:

• Nintendo Switch

• XBox 360

After working on all the ports, we may consider porting the game to mobile platforms like:

• Android 9.0 +

• iOS 11.0 +

…

7.2.12.3 Monetization

In this optional section you can define your plans for the ways you will approach releasing the game as well as

additional monetization strategies for your game.

For example:

The game will not feature in-game purchases.

Monetization efforts will be focused on selling the game itself at a full “indie price” and further monetization

will take place via substantial Downloadable Content Expansions (DLC)

The eventual mobile versions will be given away for free, with advertisements integrated between levels. It

is possible for the user to buy a low-price paid version to avoid seeing the advertisements.

7 WRITING A GAME DESIGN DOCUMENT 186



2D Game Development: From Zero To Hero

7.2.12.4 Internationalization and Localization

Internationalization and Localization are a matter that can make or break your game, when it comes to marketing

your game in foreign countries.

Due to political and cultural reasons, for instance you shouldn’t use flags to identify languages. People from territories

inside a certain country may not be well accepting of seeing their language represented by the flag of their political

adversaries.

Another example could be the following: if your main character is represented by a cup of coffee, your game could

be banned somewhere as a “drug advertisement”.

This brings home the difference between “Internationalization” and “Localization”:

Internationalization Making something accessible across different countries without major changes to its content

Localization Making something accessible across different countries, considering the target country’s culture.

We can see a possible example of this section below:

The game will initially be distributed in the following languages:

• English

• Italian

After the first release, there will be an update to include:

• Spanish

• German

• French

7.2.13 Other/Random Ideas

This is another optional section where you can use as a “idea bin”, where you can put everything that you’re not

sure will ever make its way in the game. This will help keeping your ideas on paper, so you won’t ever forget them.

We can see a small example here:

Some random ideas:

• User-made levels

• Achievements

• Multiplayer Cooperative Mode

• Multiplayer Competitive Mode

7.3 Where to go from here

This chapter represents only a guideline on what a Game Design Document can be, feel free to remove any sections

that don’t apply to your current project as well as adding new ones that are pertinent to it.

7 WRITING A GAME DESIGN DOCUMENT 187



2D Game Development: From Zero To Hero

A Game Design Document is a Body of Knowledge that will accompany you throughout the whole game development

process and it will be the most helpful if you are comfortable with it and it is shaped to serve you.

7 WRITING A GAME DESIGN DOCUMENT 188



Part 3: Game Development Basics



2D Game Development: From Zero To Hero

8 The Game Loop

All loops are infinite ones for faulty RAM modules.

Anonymous

8.1 The Input-Update-Draw Abstraction

Animations and movies are an illusion, and so are games. Games and movies show still images tens of times per

second, giving us the illusion of movement.

Any game and its menus can be abstracted into 3 main operations that are performed one after the other, in a loop:

1) Process the user input

2) Update the world (or menu) status

3) Display (Draw) the updated world (or again, menu) to the screen

We call such abstraction the “game loop”.

Preparation work

Game Loop

Process Input

Update Internal Game State

Draw Screen

game is still running? yes

Clean up

no

Figure 143: UML Diagram of the input-update-draw abstraction

8 THE GAME LOOP 190



2D Game Development: From Zero To Hero

So a pseudocode implementation of such loop would be something like the following:

Listing 32: Game Loop example

1 function game(){

2 bool game_is_running = True;

3 while (game_is_running){

4 process_user_input ();

5 update_world ();

6 draw();

7 }

8 }

This abstraction will become really useful when dealing with many rows of code and keeping it neatly organized.

8.2 Input

8.2.1 Events vs Real Time Input

Some frameworks may be able to further abstract how they process input by giving an API[g] that allows to make

use of events.

Most of the time, events will be put in a queue that will be processed separately. This way it’s easier to program how

to react to each event and keep our code neatly organized. The downside is that the performance of an event-driven

input processing is directly tied to how many events are triggered: the more events are triggered, the longer the

wait may be before we get to our processed input.

This usually depends on the implementation of the event queue: an event queue is less wasteful in terms of resources

and allows for less coupled code, but the queue could be cluttered with events we’re not interested in (for instance

mouse movement events in a game that uses only keyboard for controls) so we need to take the time to configure

our event handler to ignore certain events when not necessary.

Note!

A well-configured event-based input system is the most efficient way of doing

things, allowing code to be executed only when necessary.

On the opposite side, we have so-called “real-time input”, where at a certain point of our update routine, we check for

the instantaneous status of the input peripherals and process it immediately. This allows for a faster, more reactive

code and to apply some different logic (for instance pressing left and right on the keyboard can be coded to make

the character stop). Besides being more immediate, this system shares a lot of traits with “polling” which can be

performance-heavy, as well as inducing some undesired code coupling.

Again, a well-implemented and well-configured event-based system should feel no different from real-time input,

with the advantage of having better performance and having less code coupling.

8 THE GAME LOOP 191



2D Game Development: From Zero To Hero

8.3 Timing your loop

When it comes to anything that remotely relates to physics (that includes video games), we need to set the relation

to time in our loop. There are many ways to set our delta time (or time steps), we’ll see some of the most common.

8.3.1 What is a time step

A time step (or delta time) is a number that will define “how much time passed” between two “snapshots” of our

world (remember, the world is updating and showing in discrete intervals, giving the illusion of movement). This

number will allow us to make our loop more flexible and react better to the changes of load and machines.

8.3.2 Fixed Time Steps

The first and simplest way is to use a fixed time step, our delta time is fixed to a certain number, which makes the

simulation easier to calculate but also makes some heavy assumptions:

• Vertical Synchronization is active in the game

• The PC is powerful enough to make our game work well, 100% of the time

An example of fixed time step loop can be the following (assuming 60 frames per second or dt = 1
60 ):

Listing 33: Game loop with fixed timesteps

1 f l oat dt = 1.0/60.0;

2 bool game_is_running = True;

3

4 while (game_is_running){

5 process_user_input ();

6 update_world(dt);

7 draw();

8 }

Everything is great, until our computer starts slowing down (high load or just not enough horsepower), in that case

the game will slow down.

This means that every time the computer slows down, even for a microsecond, the game will slow down too, which

can be annoying.

Note!

A similar problem can apply between different computers: if computer A can run the

game at 30fps maximum, while computer B will run at 120fps (and we don’t account for

that), using fixed timesteps the game will run 4 times as fast on computer B.

8 THE GAME LOOP 192



2D Game Development: From Zero To Hero

8.3.3 Variable Time Steps

A way to limit the issues given by a fixed time step approach is to make use of variable time steps, which are simple

in theory, but can prove hard to manage.

The secret is measuring how much time passed between the last frame and the current frame, and use that value

to update our world.

An example in pseudocode could be the following:

Listing 34: Game loop with variable time steps

1 bool game_is_running = True;

2

3 // We initialize our dt at 1/60th of a second for the first loop

4 f l oat dt = 1.0/60.0;

5

6 while (game_is_running){

7 // We assume that get_system_time () returns the system time in milliseconds

8 f l oat begin = get_system_time ();

9 process_user_input ();

10 update_world(dt);

11 draw();

12 f l oat end = get_system_time ();

13 // We update our dt

14 dt = end - begin;

15 }

This allows to smooth the possible lag spikes, even allowing us to disable Vertical Sync and have a bit less input lag,

but this approach has some drawbacks too.

Since the delta time now depends on the speed of the game, the game can “catch up” in case of slowdowns; that

can result in a slightly different feeling, depending on the framerate, but if there is a really bad slowdown dt can

become really big and break our simulation, and collision detection will probably be the first victim.

Also this method can be a bit harder to manage, since every movement will have to be scaled with dt.

8.3.4 Semi-fixed Time Steps

This is a special case, where we set an upper limit for our time steps and let the update loop execute as fast as

possible. This way we can still simulate the world in a somewhat reliable way, avoiding the dangers of higher spikes.

A semi-fixed time step approach is the following (assuming 60 fps or dt = 1
60 ):

Listing 35: Game loop with Semi-Fixed time steps

1 f l oat dt = 1.0/60.0;

2 bool game_is_running = True;

3

4 // We bootstrap frametime for 1/60th of a second for the first frame

8 THE GAME LOOP 193



2D Game Development: From Zero To Hero

5 f l oat frametime = 1.0/60.0;

6

7 while (game_is_running){

8 // We assume that get_system_time () returns the system time in milliseconds

9 f l oat begin = get_system_time ();

10

11 while (frametime > 0.0){

12 f l oat deltaTime = min(dt, frametime);

13 process_user_input ();

14 update_world(deltaTime);

15 frametime = frametime - deltaTime;

16 }

17 draw();

18 f l oat end = get_system_time ();

19 // We memorize how long this frame lasted

20 frametime = end - begin;

21 }

This way, if the loop is running too slow, the game will slow down and the simulation won’t blow up. The main

disadvantage of this approach is that we’re taking more update steps for each draw step, which is fine if drawing

takes more than updating the world. If instead the update phase of the loop takes more than drawing it, we will

spiral into a terrible situation.

We can call it a “spiral of death”, where the simulation will take Y seconds (real time) to simulate X seconds (of game

time), with Y > X , being behind in your simulation makes the simulation take more steps, which will make the

simulation fall behind even more, thus making the simulation lag behind more and more.

8.3.5 Frame Limiting

Frame limiting is a technique where we aim for a certain duration of our game loop. If an iteration of the game loop

is faster than intended, such iteration will wait until we get to our target loop duration.

Let’s again consider a loop running at 60fps (or dt = 1
60 ):

Listing 36: Game loop with Frame Limiting

1 f l oat targetTime = 1.0/60.0;

2 bool game_is_running = True;

3

4 // We bootstrap dt to 1/60th of a second for the first frame

5 f l oat dt = 1.0/60.0;

6

7 while (game_is_running){

8 // We assume that get_system_time () returns the system time in milliseconds

9 f l oat begin = get_system_time ();

10 process_user_input ();

11 update_world(dt);

12 draw();

13 f l oat end = get_system_time ();

8 THE GAME LOOP 194



2D Game Development: From Zero To Hero

14 // We update our dt

15 dt = end - begin

16 // If some time is left , we wait until we reach 1/60th of a second.

17 wait(max(targetTime - dt, 0));

18 }

Even if the frame is limited, it’s necessary that all updates are tied to our delta time to work correctly. With this loop

the game will run at most at 60 frames per second, if there is a slowdown the game will slow down under 60 fps, if

the game runs faster it won’t go over 60fps.

8.3.6 Frame Skipping/Dropping

Time

Update Update Update Update

Slow
Update

Dropped
Frame

(Rendering is skipped)

A common solution used when a frame takes longer to update and render than the target time is using the so-called

“frame dropping”. The game won’t render the next frame, in an effort to “catch up” to the desired frame rate.

This will obviously cause a perceptible visual stutter.

8.3.7 Multi-threaded Loops

Higher budget (AAA) games don’t usually use a variation of the “classic” game loop, but instead make use of the

capabilities of newer hardware. Using multiple threads (lines of execution) executing at the same time, making

everything quicker and the framerate higher.

Multi-threaded loops are created in a way that separates the input-update part of the game loop from the drawing

part of it. This way the update thread can take care of updating our simulation, while the drawing/rendering loop

can take care of drawing the result to screen.

The catch is that we can’t just wait for the input-update thread to finish before rendering, that wouldn’t make it

quicker than just using a one-threaded game loop: instead we make the rendering thread “lag behind” the input-

update thread by 1 frame - this way while the input-update thread takes care of the frame number n, the drawing

thread will be rendering the prepared frame number n− 1.

Thread

Updating 1 2 3 4 5 6

Rendering 1 2 3 4 5

This 1-frame difference between updating and rendering introduces lag that can be quantified between 16.67ms (at

60fps) and 33.3ms (at 30fps), which needs to be added with the 2-5 ms of the LCD refresh rate, and other factors that

8 THE GAME LOOP 195



2D Game Development: From Zero To Hero

can contribute to lag. In some games where extreme precision is needed, this could be considered unacceptable,

so a single-threaded loop could be considered more fitting.

8.4 Issues and possible solutions

In this section we have a little talk about some common issues related to the game loop and its timing, and some

possible solutions

8.4.1 Frame/Screen Tearing

Screen tearing is a phenomenon that happens when the “generate output” stage of the game loop happens in the

middle of the screen drawing a frame.

This makes it so that a part of the drawn frame shows the result of an output stage, while another part shows a more

updated version of the frame, given by a more recent game loop iteration.

Figure 144: An example of screen tearing

A very common fix for this phenomenon is double buffering, where two color buffers are used. While the first is

shown on screen, the game loop updates and draws on the second color buffer.

When comes the time to draw the color buffer on screen, an operation called “flipping” is performed, where the

second color buffer is shown on screen, so that the game loop can draw on the first color buffer.

To make the game even smoother, a technique called “triple buffering” can be used, which adds a third color buffer

is used to make the animation smoother at the cost of a higher input lag.

8.5 Drawing to screen

When drawing to screen, the greatest majority of games make use of what is called the “painter’s algorithm”, which

looks something like the following:

8 THE GAME LOOP 196



2D Game Development: From Zero To Hero

1. Clear the screen

2. Draw The Farthest Background

3. Draw The Second Farthest Background

4. Draw The Tile Map

5. Draw The enemies and obstacles

6. Draw The Player

7. Display everything on screen

If we divide each “layer” we can see how the painter’s algorithm works:

Figure 145: A small example of the “painter’s algorithm”

Just like a real painter, we draw the background items before the foreground ones, layering each one on top of

the other. Sometimes games make use of priority queues to decide which items to draw first, other times game

developers (usually under the time constraints of a game jam) just hard-code the draw order.

8.5.1 Clearing the screen

Special note about clearing the screen: this is an operation that sometimes may look useless but, like changing the

canvas for a painter, clearing the screen (or actually the “buffer” we’re drawing on) avoids a good deal of graphical

glitches.

8 THE GAME LOOP 197



2D Game Development: From Zero To Hero

Figure 146: How not clearing the screen can create glitches

In the previous image, we can see how a black screen with only a FPS counter can end up drawing all kinds of

glitches when the screen buffer is not cleared: we can clearly see the FPS counter, but the rest of the screen should

be empty, instead the GPU is trying to represent residual data from its memory, causing the glitches.

Figure 147: Another type of glitch created by not clearing the screen

If you forget to clear your screen or set a background every frame, the old buffer data will remain on screen, creating

a “trail-like” effect on your game, which is probably undesirable.

8 THE GAME LOOP 198



2D Game Development: From Zero To Hero

9 Collision Detection and Reaction

Every detection of what is false directs us towards what is true: every trial

exhausts some tempting form of error.

William Whewell

When it comes to collision management, there are two main phases:

• Collision Detection: you find out which game objects collided with each other;

• Collision Reaction: you handle the physics behind the collision detected, making the game objects react to

such collision.

Collisions don’t only happen between game objects (two fighters hitting each other), but also between a character

and the world (or they would end up just going through the ground).

In this section we’ll talk about some ways you can detect and react to collisions.

9.1 Why Collision Detection is done in multiple passes

Collision detection algorithms can be quite costly, even more when you are using a brute force approach, but it’s

possible to have a more precise collision detection at a lower cost by combining different collision detection algo-

rithms.

The most common way to apply a multi-pass collision detection is by dividing the process in a “broad” and a “fine”

pass.

The broad pass can use a very simple algorithm to check for the possibility of a collision, the algorithms used are

usually computationally cheap, such as building quad trees.

When the simpler algorithm detects the possibility of a collision, a more precise algorithm is used to check if a

collision really happened, usually such finer algorithms are computationally expensive and will benefit from the first

“broad pass” filter, thus avoiding useless heavy calculations.

Note!

In this chapter we’ll see the easier narrow-pass detection first, followed by the more

complex broad-pass algorithms, but remember that a good collision detection system

does a “broad-pass” first, before delving into the “narrow-pass”.

9.2 Narrow-Phase Collision Detection: did it really collide?

First of all, we need to see how we can make sure that two objects really collide with each other.

Sometimes this presents a (quite common) problem when it comes to precision: computers have no knowledge of

infinity (due to their finiteness, see computers are (not) precise). This means that we may need to give some leeway

9 COLLISION DETECTION AND REACTION 199



2D Game Development: From Zero To Hero

and define an “acceptable error” in our calculations, thus we will create a “small enough value” (which in math is

represented by the Greek letter “epsilon”: ϵ) and change our algorithms accordingly.

9.2.1 Collision Between Two Points

This is the simplest case: points are mono-dimensional objects, and the only way two points can collide is when they

have the same coordinates.

An example algorithm would be the following:

Listing 37: Point to point collision detection

1 function point_collision(point A, point B) -> bool{

2 i f (A.x == B.x AND A.y == B.y){

3 return True;

4 }else{

5 return False;

6 }

7 }

A possible lazy/shorter version could be:

Listing 38: Shortened version of a point to point collision detection

1 function point_collision(point A, point B) -> bool{

2 return A.x == B.x AND A.y == B.y;

3 }

This algorithm consists in a constant number of operations, so it runs in O(1).

Since numbers in computers can be really precise, a collision between two points may be a bit too precise, so it

could prove useful to have a “buffer” around the point, so that we can say that the two points collided when they’re

around the same place.

In this case, it may prove to be a lot more useful to do a point vs circle detection, or even a circle vs circle collision

detection, in that case the “radius” would be the “approximation” of a point.

If instead you want to use a different method that doesn’t involve square roots, you can use epsilon values to have

an approximation of the collision. In this case the collision area won’t be round, but square.

Listing 39: Point to point collision detection with epsilon values

1 function point_collision(point A, point B) -> bool{

2 f l oat epsilon = 0.0001; // Let's take a sufficiently low value

3 // If both coordinates are "close enough", we trigger a collision.

4 // We take the absolute value , just in case some subtractions end up being negative.

5 return abs(A.x - B.x) <= epsilon AND abs(A.y - B.y) <= epsilon;

6 }

9 COLLISION DETECTION AND REACTION 200



2D Game Development: From Zero To Hero

9.2.2 Collision Between A Point and a Circle

Now a circle comes into the mix, a circle has two major characteristics: a center and a radius.

r

x

Figure 148: Reference image for Point-Circle Collision detection

We can see that the distance between the center of a circle and our point can be expressed with a formula:

d = r + x

Where r is the circle radius and x is the difference of the distance between the center of the circle and the point

(which can be negative):

x = d− r

The point is inside the circle when x ≤ 0, which means:

x ≤ 0 ⇔ d− r ≤ 0 ⇔ d ≤ r

We can express this in a few words:

A point is considered inside of a circle when the distance between the point and the center of the circle is

less than or equal to the radius.

So we need a function that calculates the distance between two points, and then use it to define if a point is inside

a circle.

An example could be the following:

Listing 40: Point to circle collision detection

1 structure Circle{

9 COLLISION DETECTION AND REACTION 201



2D Game Development: From Zero To Hero

2 // Let's define a circle class/structure

3 Point center;

4 in t radius;

5 }

6

7 function distance(Point A, Point B) -> f l oat {

8 // Calculates the distance between two points

9 return square_root ((A.x - B.x)^2 + (A.y - B.y)^2);

10 }

11

12 function circle_point_collision(Circle A, Point B) -> bool{

13 i f (distance(A.center , B) <= A.radius){

14 return True;

15 }else{

16 return False;

17 }

18 }

Again, the lazier version:

Listing 41: Shorter version of a point to circle collision detection

1 structure Circle{

2 // Let's define a circle class/structure

3 Point center;

4 in t radius;

5 }

6

7 function distance(Point A, Point B) -> bool{

8 // Calculates the distance between two points

9 return square_root ((A.x - B.x)^2 + (A.y - B.y)^2);

10 }

11

12 function circle_point_collision(Circle A, Point B) -> bool{

13 return distance(A.center , B) <= A.radius;

14 }

Although slightly more heavy, computation-wise, this algorithm still runs in O(1).

9.2.3 Collision Between Two Circles

Let’s add another circle into the mix now, and think in more or less the same way as before:

9 COLLISION DETECTION AND REACTION 202



2D Game Development: From Zero To Hero

r1 r2x

Figure 149: Reference image for Circle-Circle collision detection

We can see the distance between the center of the circles as expressed with the following formula:

d = r1 + x+ r2

Where r1 and r2 are the radii, and x is defined as follows:

x = d− (r1 + r2)

As before, our x can be negative, which means that the circles are colliding if x ≤ 0, which means:

x ≤ 0 ⇔ d− (r1 + r2) ≤ 0 ⇔ d ≤ r1 + r2

We can express the concept in words again:

Two circles are colliding when the distance between their centers is less or equal the sum of their radii

In pseudo code this would be:

Listing 42: Circle to Circle Collision Detection

1 structure Circle{

2 // Let's define a circle class/structure

3 Point center;

4 in t radius;

5 }

6

7 function distance(Point A, Point B) -> f l oat {

8 // Calculates the distance between two points

9 return square_root ((A.x - B.x)^2 + (A.y - B.y)^2);

10 }

11

12 function circle_circle_collision(Circle A, Circle B) -> bool{

9 COLLISION DETECTION AND REACTION 203



2D Game Development: From Zero To Hero

13 i f (distance(A.center , B.center) <= A.radius + B.radius){

14 return True;

15 }else{

16 return False;

17 }

18 }

The shorter version would be:

Listing 43: Shorter Version of a Circle to Circle Collision Detection

1 structure Circle{

2 // Let's define a circle class/structure

3 Point center;

4 in t radius;

5 }

6

7 function distance(Point A, Point B) -> f l oat {

8 // Calculates the distance between two points

9 return square_root ((A.x - B.x)^2 + (A.y - B.y)^2);

10 }

11

12 function circle_circle_collision(Circle A, Circle B) -> bool{

13 return distance(A.center , B.center) <= A.radius + B.radius;

14 }

Again, this algorithm performs a number of operations that is constant, so it runs in O(1).

9.2.4 Collision Between Two Axis-Aligned Rectangles (AABB)

This is one of the most used types of collision detection used in games: it’s a bit more involved than other types of

collision detection, but it’s still computationally easy to perform. This is usually called the “Axis Aligned Bounding

Box” collision detection, or AABB.

Let’s start with a bit of theory. We have two squares:

y

x

Figure 150: Example used in the AABB collision detection

To know if we may have a collision, we need to check if one of the sides is “inside” (that means between the top and

9 COLLISION DETECTION AND REACTION 204



2D Game Development: From Zero To Hero

bottom sides) of another rectangle:

y

x

Figure 151: Top-Bottom Check

In this case we know that the “top side” of the second rectangle (highlighted in blue) has a y coordinate between

the first rectangle’s top and bottom sides’ y coordinates (highlighted in red).

Though this is a necessary condition, this is not sufficient, since we may have a situation where this condition is

satisfied, but the rectangles don’t collide:

y

x

Figure 152: Top-Bottom Check is not enough

So we need to check the other sides also, in a similar fashion:

y

x

Figure 153: An example of a left-right check

This has to happen for all four sides of one of the rectangle.

Now we can try putting down a bit of code, we’ll assume that rectangles are defined by their top-left corner (as

usually happens) and their width and height:

Listing 44: Axis-Aligned Bounding Box Collision Detection

1 structure Point{

9 COLLISION DETECTION AND REACTION 205



2D Game Development: From Zero To Hero

2 // Rewritten as a memo

3 in t x;

4 in t y;

5 }

6

7 structure Rectangle{

8 Point corner;

9 in t width;

10 in t height;

11 }

12

13 function rect_rect_collision(Rectangle A, Rectangle B) -> bool{

14 i f ((A.corner.x < B.corner.x + B.width) AND

15 (A.corner.x + A.width > B.corner.x) AND

16 (A.corner.y < B.corner.y + B.height) AND

17 (A.corner.y + A.height > A.corner.y)){

18 return True;

19 }else{

20 return False;

21 }

22 }

This complex conditional checks 4 things:

• The left side of rectangle A is at the left of the right side of rectangle B;

• The right side of rectangle A is at the right of the left side of rectangle B;

• The top side of rectangle A is over the bottom side of rectangle B;

• The bottom side of rectangle A is underneath the top side of rectangle B.

If all four checks are true, then a collision happened.

The best way to understand this algorithm properly is to test it by hand and convince yourself that it works.

This is a very light algorithm but can quickly become heavy on the CPU when there are many objects to check for

collision. We’ll see later how to limit the number of checks and make collision detection an operation that is not as

heavy on our precious CPU cycles.

9.2.5 Line/Point Collision

We can represent a segment by using its two extreme points, which proves to be a quite inexpensive way to represent

a line (it’s just two points). Now how do we know if a point is colliding with a line?

To know if a point is colliding with a line we need… Triangles!

Every triangle can be represented with 3 points, and there is a really useful theorem that we can make use of:

The sum of the lengths of any two sides must be greater than, or equal, to the length of the remaining side.

9 COLLISION DETECTION AND REACTION 206



2D Game Development: From Zero To Hero

So, given a triangle ABC:

Figure 154: Example of the triangle inequality theorem

We get the following 3 inequalities:

AB +BC ≤ AC

AC +BC ≤ AB

AB +AC ≤ BC

What is more interesting to us is that when the one of the vertices of the triangle is on its opposite side, the triangle

degenerates:

Figure 155: Example of a degenerate triangle

And the theorem degenerates too, to the following:

AC +BC = AB

So we can calculate the distance between the point and each of the two extremes of the line and we know that when

the sum of such distances is equal to the length of the line, the point will be colliding with the line.

In code, it would look something like the following:

Listing 45: Line to Point Collision detection

1 structure Point{

2 in t x;

3 in t y;

4 }

5

6 structure Line{

9 COLLISION DETECTION AND REACTION 207



2D Game Development: From Zero To Hero

7 Point A;

8 Point B;

9 }

10

11 function distance(Point A, Point B) -> f l oat {

12 // Calculates the distance between two points

13 return square_root ((A.x - B.x)^2 + (A.y - B.y)^2);

14 }

15

16 function line_point_collision(Point pt, Line ln) -> bool{

17 // First , let's calculate the length of the line

18 f l oat length = distance(ln.A, ln.B);

19 // Now let's calculate the distance between the point pt

20 // and the point "A" of the line

21 f l oat pt_a = distance(ln.A, pt);

22 // Same Goes for the distance between pt and "B"

23 f l oat pt_b = distance(ln.B, pt);

24 // Now for the detection

25 i f (pt_a + pt_b == length){

26 return True;

27 }else{

28 return False;

29 }

30 }

It could prove useful to put a “buffer zone” in here too, so that the collision detection doesn’t result too jerky and

precise. In that case you may want to take a look at the line vs circle algorithm, in that case the radius would be the

“approximation” of the point.

9.2.6 Line/Circle Collision

As in the previous paragraph, we memorize a line as a pair of Points, so checking if the circle collides with either end

of the line is easy, using the Point/Circle collision algorithm.

Listing 46: Partial Implementation of a Line to Circle Collision Detection

1 structure Point{

2 in t x;

3 in t y;

4 }

5

6 structure Line{

7 Point A;

8 Point B;

9 }

10

11 structure Circle{

12 Point center;

13 in t radius;

9 COLLISION DETECTION AND REACTION 208



2D Game Development: From Zero To Hero

14 }

15

16 // ...

17

18 function line_circle_collision(Circle circle , Line line) -> bool{

19 bool collides_A = circle_point_collision(circle , line.A);

20 bool collides_B = circle_point_collision(circle , line.B);

21 i f (collides_A OR collides_B){

22 return True;

23 }

24 // ...

25 }

Now our next objective is finding the closest point on the line to the center of our circle. The details and demon-

strations on the math behind this will be spared, just know the following:

Given a line AB between points A = (x1, y1) and B = (x2, y2) and a point P = (xk, yk), the point on the line

closest to P has coordinates:

x = x1 + u · (x2 − x1)

y = y1 + u · (y2 − y1)

With:

u =
(xk − x1) · (x2 − x1) + (yk − y1) · (y2 − y1)

||B −A||2

That’s a lot of math!

We need to be careful though, cause this formula gives us the point for an infinite line, so the point we find could be

outside of our line. We will use the line/point algorithm to check for that.

After we made sure the point is on the line, we can measure the distance between such point and the center of our

circle, if such distance is less than the radius, we have a hit! (Or just apply the circle/point collision algorithm again).

The final algorithm should look something like this:

Listing 47: Line to circle collision detection

1 structure Point{

2 in t x;

3 in t y;

4 }

5

6 structure Line{

7 Point A;

9 COLLISION DETECTION AND REACTION 209



2D Game Development: From Zero To Hero

8 Point B;

9 }

10

11 structure Circle{

12 Point center;

13 in t radius;

14 }

15

16 function distance(Point A, Point B) -> f l oat {

17 // Calculates the distance between two points

18 return square_root ((A.x - B.x)^2 + (A.y - B.y)^2);

19 }

20

21 function line_point_collision(Line line , Point point) -> bool{

22 // ...

23 }

24

25 function circle_point_collision(Circle circ , Point point) -> bool{

26 // ...

27 }

28

29 function line_circle_collision(Circle circle , Line line) -> bool{

30 // We check the ends first

31 bool collides_A = circle_point_collision(circle , line.A);

32 bool collides_B = circle_point_collision(circle , line.B);

33 i f (collides_A OR collides_B){

34 return True;

35 }

36 // We pre -calculate "u", we'll use some variables for readability

37 in t x1 = line.A.x;

38 in t x2 = line.B.x;

39 in t xk = circle.center.x;

40 in t y1 = line.A.y;

41 in t y2 = line.B.y;

42 in t yk = circle.center.y;

43 f l oat u = ((xk - x1) * (x2 - x1) + (yk - y1) * (y2 - y1))/( distance(line.A, line.B))^2;

44 // Now let's calculate the x and y coordinates

45 f l oat x = x1 + u * (x2 - x1);

46 f l oat y = y1 + u * (y2 - y1);

47 // "Reuse ": we'll use some older functions , let's create a point , with the coordinates we

found

48 Point P = Point(x,y);

49 // Let's check if the "closest point" we found is on the line

50 i f (( line_point_collision(line , P)) == False){

51 // If the point is outside the line , we return false , because the ends have already been

checked against collisions

52 return False

53 }else{

54 // Let's Reuse the Point/Circle Algorithm

55 return circle_point_collision(circle , P);

9 COLLISION DETECTION AND REACTION 210



2D Game Development: From Zero To Hero

56 }

57 }

9.2.7 Point/Rectangle Collision

If we want to see if a point collides with a rectangle is really easy, we just need to check if the point’s coordinates

are inside the rectangle.

Listing 48: Point/Rectangle collision detection

1 function pointRectCollision( f l oat x1, f l oat y1, f l oat rectx , f l oat recty , f l oat rectwidth , f l oat

rectheight) -> bool{

2 // We check if the point is inside the rectangle

3 return x1 >= rectx AND x1 <= rectx + rectwidth AND y1 >= recty AND y1 <= recty + rectheight;

4 }

9.2.8 Point/Triangle Collision

A possible way to define if a point is inside a triangle, we can use a bit of geometry.

We can use Heron’s formula to calculate the area of the original triangle, and compare it with the sum of the areas

created by the 3 triangles made from 2 points of the original triangle and the point we are testing.

Figure 156: Point/Triangle Collision Detection: division into sub-triangles

If the sum of the 3 areas (represented in different colors in the figure) equals to the original calculated area, then

we know that the point is inside the triangle.

Let’s see the code:

Listing 49: Point/Triangle Collision Detection

1 function point_triangle_collision( f l oat px, f l oat py, f l oat x1, f l oat y1, f l oat x2, f l oat y2,

f l oat x3, f l oat y3) -> bool{

2 f l oat original_area = abs((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1));

3 f l oat area1 = abs((x1-px)*(y2-py) - (x2-px)*(y1-py));

4 f l oat area2 = abs((x2-px)*(y3-py) - (x3-px)*(y2-py));

5 f l oat area3 = abs((x3-px)*(y1-py) - (x1-px)*(y3-py));

9 COLLISION DETECTION AND REACTION 211



2D Game Development: From Zero To Hero

6 i f (area1 + area2 + area3 == original_area){

7 return True;

8 }else{

9 return False;

10 }

11 }

Let’s see how we can change the algorithm to accommodate for some leeway, since the we may be requiring too

much precision from our algorithms. We can do that by using epsilon values.

Our main test is that the sum of the area of the 3 triangles we create (A1, A2, A3) is equal to the area of the original

triangle (A0), in math terms:

A1 +A2 +A3 = A0

We can also rewrite such equation this way:

A1 +A2 +A3 −A0 = 0

Due to possible precision issues we know that there are some values where the equation above is not true, so we

choose a “low enough error” that we are willing to accept, for example ϵ = 0.0001, and use this test instead:

|A1 +A2 +A3 −A0| < ϵ

Which can be expanded (if you want) to

−ϵ < A1 +A2 +A3 −A0 < ϵ

The code wouldn’t change much, but for sake of clarity, here it is:

Listing 50: Point/Triangle Collision Detection with epsilon

1 function point_triangle_collision( f l oat px, f l oat py, f l oat x1, f l oat y1, f l oat x2, f l oat y2,

f l oat x3, f l oat y3) -> bool{

2 // We accept anything that is closer than 1/1000 th of unit

3 const f loat epsilon = 0.0001;

4 f l oat original_area = abs((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1));

5 f l oat area1 = abs((x1-px)*(y2-py) - (x2-px)*(y1-py));

6 f l oat area2 = abs((x2-px)*(y3-py) - (x3-px)*(y2-py));

7 f l oat area3 = abs((x3-px)*(y1-py) - (x1-px)*(y3-py));

8 i f (abs(area1 + area2 + area3 - original_area) < epsilon){

9 return True;

10 }else{

9 COLLISION DETECTION AND REACTION 212



2D Game Development: From Zero To Hero

11 return False;

12 }

13 }

9.2.9 Circle/Rectangle Collision

First of all we need to identify which side of the rectangle we should test against, so if the centre of the circle is to

the right of the rectangle, we will test against the right edge of the rectangle, if it’s above we’ll test against the top

edge and so on…

After that, we just perform some math on the distances and calculated values to detect if the circle collides with the

rectangle.

Listing 51: Rectangle to Circle Collision Detection

1 structure Point{

2 // Rewritten as a memo

3 in t x;

4 in t y;

5 }

6

7 structure Rectangle{

8 // Let's define a rectangle class/structure

9 Point corner;

10 in t width;

11 in t height;

12 }

13

14 structure Circle{

15 // Let's define a circle class/structure

16 Point center;

17 in t radius;

18 }

19

20 function circle_rectangle_collision(Circle circ , Rectangle rect) -> bool{

21 // Detects a collision between a circle and a rectangle

22

23 // These variables are used as the coordinates we should test against

24 // They are temporarily set to the circle center 's coordinates for a reason we'll see soon

25 in t tx = circ.center.x;

26 in t ty = circ.center.y;

27

28 // Let's detect which edge to test against on the x axis

29 i f (circ.center.x < rect.corner.x){

30 // We're at the left of the rectangle , test against the left side

31 tx = rect.corner.x;

32 }else i f (circ.center.x > rect.corner.x + rect.width){

33 // We're at the right of the rectangle , test against the right side

34 tx = rect.corner.y + rect.width;

9 COLLISION DETECTION AND REACTION 213



2D Game Development: From Zero To Hero

35 }

36

37 // Same thing on the vertical axis

38 i f (circ.center.y < rect.corner.y){

39 // We're above the rectangle , test against the top side

40 ty = rect.corner.y;

41 }else i f (circ.center.y > rect.corner.y + rect.height){

42 // We're below the rectangle , test against the bottom side

43 ty = rect.corner.y + rect.height;

44 }

45

46 // Let's get the distance between the testing coordinates and the circle center

47 in t distanceX = circ.center.x - tx;

48 in t distanceY = circ.center.y - ty;

49 f l oat distance = square_root(distanceX ^2 + distanceY ^2);

50

51 // Note that if the center of the circle is inside the rectangle , the testing coordinates

will be the circle 's center itself , thus the next conditional will always return true

52

53 i f (distance <= circ.radius){

54 return True;

55 }

56

57 // Default to false in case no collision occurs

58 return False;

59 }

9.2.10 Line/Line Collision

Line/Line collision is quite simple to implement once you know the inner workings of geometry, but first we need to

explain the thought behind this algorithm, so… math warning!!

Let’s look at the following image:

9 COLLISION DETECTION AND REACTION 214



2D Game Development: From Zero To Hero

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 157: Example image for line/line collision

A generic point Pa of line A can be represented with the following formula:

Pa = P1 + ua · (P2 − P1)

which translates into the coordinate-based equations:

xa = x1 + ua · (x2 − x1)

ya = y1 + ua · (x2 − x1)

This makes us understand that any point of line A can be represented by its starting point P1, plus a certain fraction

(represented by ua) of the vector represented by P2 − P1.

This also means that 0 ≤ ua ≤ 1, else the point won’t be on the segment.

In the same way, a generic point Pb of line B can be represented with:

Pb = P3 + ub · (P4 − P3)

which becomes:

xb = x3 + ub · (x4 − x3)

yb = y3 + ub · (x4 − x3)

9 COLLISION DETECTION AND REACTION 215



2D Game Development: From Zero To Hero

The two lines will collide when Pa = Pb, so we get the following equations:

x1 + ua · (x2 − x1) = x3 + ub · (x4 − x3)

y1 + ua · (y2 − y1) = y3 + ub · (y4 − y3)

That need to be solved in the ua and ub variables.

The result is:

ua = (x4−x3)·(y1−y3)−(y4−y3)·(x1−x3)
(y4−y3)·(x2−x1)−(x4−x3)·(y2−y1)

ub =
(x2−x1)·(y1−y3)−(y2−y1)·(x1−x3)
(y4−y3)·(x2−x1)−(x4−x3)·(y2−y1)

Substituting either of the results in the corresponding equation for the line will give us the intersection point (which

may be useful for some particle effects).

Now some notes on our solution:

• If the denominator for the equations for ua and ub equals to zero, the two lines are parallel

• If both the numerator and denominator for ua and ub are equal to zero, the two lines are coincident

• If both 0 ≤ ua ≤ 1 and 0 ≤ ub ≤ 1 then the two segments collide.

Now we can translate all this math into code:

Listing 52: Implementation of the line/line collision detection

1 function lineLineCollision( f l oat x1, f l oat y1 , f l oat x2, f l oat y2, f l oat x3, f l oat y3, f l oat x4 ,

f l oat y4) -> bool{

2 // Let's calculate the denominator , this will allow us to avoid a

3 // "divide by zero" error

4 f l oat den = ((y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1));

5

6 i f (den == 0){

7 // The lines are parallel

8 return fa lse ;

9 }

10

11 f l oat uA = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / den;

12 f l oat uB = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / den;

13

14 // Let's see if uA and uB tell us the lines are colliding

15 i f ((uA >= 0 AND uA <= 1) AND (uB >= 0 AND uB <= 1)){

16 return true;

17 }

18

19 // If not , they don't collide

20 return fa lse ;

21 }

9 COLLISION DETECTION AND REACTION 216



2D Game Development: From Zero To Hero

This collision detection algorithm can be useful for line-based puzzle games, line the untangle puzzle.

9.2.11 Line/Rectangle Collision

Given the previous explanation about the Line/Line collision detection, it’s quite easy to build a Line/Rectangle

algorithm; distinguishing the cases where we want to account for a segment being completely inside of a rectangle

or not.

Listing 53: Implementation of the line/rectangle collision detection

1 function lineLineCollision( f l oat x1, f l oat y1 , f l oat x2, f l oat y2, f l oat x3, f l oat y3, f l oat x4 ,

f l oat y4) -> bool{

2 // our previous implementation of the line/line collision detection

3 // ...

4 }

5

6 function pointRectCollision( f l oat x1, f l oat y1, f l oat rectx , f l oat recty , f l oat rectwidth , f l oat

rectheight) -> bool{

7 // our previous implementation of a point/rectangle collision detection

8 // ...

9 }

10

11 function lineRectangleCollision( f l oat x1, f l oat y1, f l oat x2, f l oat y2 , f l oat rectx , f l oat recty

, f l oat rectwidth , f l oat rectheight) -> bool{

12 // If we want to test if a line is completely inside of a rect , we just need

13 // to see if any of its endpoints is inside the rectangle

14 i f (pointRectCollision(x1, y1, rectx , recty , rectwidth , rectheight) OR pointRectCollision(x2

, y2, rectx , recty , rectwidth , rectheight)){

15 // At least one of the ends of the segment is inside the rectangle

16 return True;

17 }

18 // Now to test the rectangle against the line , if it's not completely inside

19 bool left = lineLineCollision(x1, y1, x2, y2, rectx , recty , rectx , recty + rectheight);

20 bool right = lineLineCollision(x1, y1, x2, y2, rectx + rectwidth , recty , rectx + rectwidth ,

recty + rectheight);

21 bool top = lineLineCollision(x1, y1, x2, y2, rectx , recty , rectx + rectwidth , recty);

22 bool bottom = lineLineCollision(x1, y1, x2, y2, rectx , recty + rectheight , rectx + rectwidth

, recty + rectheight);

23

24 i f (left OR right OR top OR bottom){

25 // We hit one of the sides , we are colliding

26 return True;

27 }

28

29 // In any other case , return false

30 return False;

31 }

9 COLLISION DETECTION AND REACTION 217



2D Game Development: From Zero To Hero

This can prove useful to test for “line of sight” inside an AI algorithm.

9.2.12 Point/Polygon Collision

Here we are, the most complex matter when it comes to narrow-phase collision detection: detecting collisions

between arbitrary convex polygons.

Note!

In this book we will focus on convex polygons “without holes”, which is the most com-

mon situation you’ll find yourself in.

First of all, we will start by talking about some theorems and requirements that will help us on the way to build a

“polygon vs polygon” collision detection algorithm.

9.2.12.1 Jordan Curve Theorem

Let’s imagine a plane, like our 2D screen: if we draw a non-self-intersecting, continuous loop in the plane we obtain

a Jordan Curve. This curve separates the plane in two distinct regions: the “inside” and the “outside”.

Inside

Outside

Figure 158: Example of a Jordan Curve

Any non-self-intersecting polygon (be it convex or non-convex) can be seen as a Jordan curve, this means that we

can easily identify (programmatically) if a point is inside or outside the polygon. At least in the “convex” case.

Let’s take a convex polygon, and a point inside such polygon: we can see that if we choose a point outside the

polygon (non-colliding) we can strike a line between the “inside point” and the chosen point, and such line will

intersect one of the polygon’s edges. This gives us an idea on how to check for “point vs. polygon”.

9 COLLISION DETECTION AND REACTION 218



2D Game Development: From Zero To Hero

P

Q

Figure 159: A simple case where a point is outside the polygon

This doesn’t happen if the point is inside the polygon, obviously:

P

Q

Figure 160: A simple case where a point is inside the polygon

This is all well and good, but we have two problems on hand:

• Finding a point inside the polygon;

• We have a non-convex polygon;

Let’s leave the first problem aside, since talking about it may end up being confusing and just empty talk (or writing,

being this a book), and let’s focus on the second problem.

If we have a non-convex polygon, we may end up with a line that intersects the polygon’s perimeter even if the point

is colliding:

9 COLLISION DETECTION AND REACTION 219



2D Game Development: From Zero To Hero

P

Q1

Q2

Figure 161: How a non-convex polygon makes everything harder

Here we call P the “point inside the polygon” while Q1 and Q2 are the points we are testing: as we can see Q2

triggers our “non-colliding” test even though it is inside the polygon.

Can you see what can help us solving this issue? I’m sure you have a number of ideas in mind, we’ll talk about it in

the non-convex polygon collision detection section.

9.2.12.2 Thinking outside the box: polygon triangulation

As you can see, as simple as it can be, the Jordan curve theorem poses some problems that may be a bit out of our

reach as of now, so let’s try to find a less ideal but easier to understand solution.

Let’s now limit ourselves to convex polygons, which (again) is the most common situation.

We can take inspiration from 3D graphics, where any solid shape (and thus the polygons that make those up) are

decomposed to a bunch of triangles. Nothing stops us from doing the same and taking any polygon and decomposing

it to a group of triangles, like follows:

Figure 162: Decomposing a polygon into triangles

9 COLLISION DETECTION AND REACTION 220



2D Game Development: From Zero To Hero

This specific triangulation is called “fan triangulation” and it is chosen for itsΘ(n) (where n is the number of vertices)

execution time.

9.2.12.3 Bounding Boxes

Before making our poor CPU undertake big calculations, we may want to check if there is even a possibility of a

collision, maybe with a simpler algorithm.

The great majority of the lifetime of our game objects is spent not colliding with anything, so if we can easily exclude

a collision before starting complex algorithms, our game will just benefit from it.

We can take our complex polygon and give it a “bounding box”, any point that is inside such box has a possibility of

colliding with our polygon, but any point outside the bounding box surely will not collide.

Figure 163: Example of a polygon with its bounding box

How do we calculate a bounding box? Simple, we just need 4 coordinates:

• The smallest x (which we’ll call xmin)

• The smallest y (ymin)

• The biggest x (xmax)

• The biggest y (ymax)

The vertices of our bounding box will always be:

A(xmin, ymin) B(xmax, ymin) C(xmax, ymax) D(xmin, ymax)

9 COLLISION DETECTION AND REACTION 221



2D Game Development: From Zero To Hero

Tip!

Thanks to how rectangles work, we can just use the pointsA andC to build a rectangle:

since they contain all 4 coordinates, we can infer B and D from them.

This is simple to achieve: we just need to loop over all the vertices and find our coordinates. The algorithm here

below:

Listing 54: How to find the bounding box of a polygon

1 structure Point{

2 // Rewritten as a memo

3 in t x;

4 in t y;

5 }

6

7 class Rectangle{

8 Point corner;

9 Integer width;

10 Integer height;

11 // ...

12 @staticmethod

13 function from_points(Point topleft , Point bottomright) -> Rectangle{

14 // ...

15 }

16 // ...

17 }

18

19 function bounding_box(Point[] vertices) -> Rectangle{

20 // First we create and bootstrap the variables

21 in t xmin = vertices [0].x;

22 in t xmax = vertices [0].x;

23 in t ymin = vertices [0].y;

24 in t ymax = vertices [0].y;

25 // Now we iterate through all the other vertices

26 for (each vertex in vertices){

27 i f (vertex.x < xmin){

28 xmin = vertex.x;

29 }

30 i f (vertex.x > xmax){

31 xmax = vertex.x;

32 }

33 i f (vertex.y < ymin){

34 ymin = vertex.y;

35 }

36 i f (vertex.y > ymax){

37 ymax = vertex.y;

38 }

9 COLLISION DETECTION AND REACTION 222



2D Game Development: From Zero To Hero

39 }

40 // Now we can build the needed points for the bounding box

41 A = new Point();

42 C = new Point();

43 A.x = xmin;

44 A.y = ymin;

45 C.x = xmax;

46 C.y = ymax;

47 // We build our bounding box

48 Rectangle boundingBox = Rectangle.from_points(A, C);

49 // and return it

50 return boundingBox;

51 }

To check if the collision “may happen”, we can just use a simple Point vs Rectangle collision check.

9.2.12.4 Point/Polygon collision detection using triangulation

Finally, after all the math and preparations, we can start working towards our collision detection algorithm.

Pitfall Warning!

This algorithm works only with convex polygons that have no holes, also it probably is

not the most efficient way to check for collisions between a point and a polygon.

This is more akin to an exercise in creativity and less about “notions”: we found a

simple solution to a complex problem. Even if it is not the most efficient, it may be

“efficient enough”.

9.2.12.4.1 The “Polygon” class

Differently from previous classes and structures, the “polygon” class will need a little more work. This is because

we are going to do more than just merely memorize vertices.

First of all we need an ordered list (or array) of vertices, which will be represented by points. Secondly, we need

facilities to calculate list of triangles, as well as their areas.

Pitfall Warning!

You may be tempted to memorize the “triangles” that are an output of the “fan trian-

gulation”, as well as their areas. This may be a good idea if well managed, but we

will need to take care of “moving” those triangles and manage when the polygon gets

deformed: in that case all the triangle areas will have to be recalculated.

Same goes for the bounding box, which will change in size when the polygon rotates

or deforms. In this book we will try to keep the class as generic as possible (as well as

simple), thus we will just recalculate everything every frame as needed.

9 COLLISION DETECTION AND REACTION 223



2D Game Development: From Zero To Hero

Thirdly, we need the constructor to do some math before we can use the polygon. Finally we need to integrate a

“fanning” function.

Whew… That’s a lot of work, but here’s the code for the polygon class:

Listing 55: A (not so) simple polygon class

1 class Polygon{

2 Point [] vertices;

3

4 function calculate_bounding_box () -> Rectangle{

5 // This function calculates the bounding box

6 // -------------------------

7 // First we create and bootstrap the variables

8 in t xmin = vertices [0].x;

9 in t xmax = vertices [0].x;

10 /*

11 * ...

12 * see the bounding box algorithm for the full version

13 * ...

14 */

15 // We build our bounding box

16 Rectangle boundingBox = Rectangle.from_points(A, C)

17 // and return it

18 return boundingBox;

19 }

20

21 function do_fanning () -> Triangle []{

22 /*

23 * This function iterates over the vertices and returns

24 * an array of triangles corresponding to the "fan triangulation"

25 */

26 // We fix the "base" of the fan on the first vertex

27 Point root_vertex = vertices [0];

28 Triangle [] temp_triangles = new Triangle [];

29 // Now we iterate through all the other vertices

30 for (each j from 2 to vertices.length () - 1){

31 // j goes from the third vertex , to the last

32 // j - 1 goes from the second to the second to last

33 temp_triangles.append(Triangle.from_points(root_vertex , j - 1, j));

34 }

35 // In the end , we will have the triangles array , we can just return it

36 return temp_triangles;

37 }

38 }

9.2.12.4.2 The algorithm

After all this preparation, we are finally ready for the algorithm, which will happen in two passes:

9 COLLISION DETECTION AND REACTION 224



2D Game Development: From Zero To Hero

1. A “broad”-ish pass, where we compare the point to the polygon’s bounding box

2. A “proper-narrow” pass, where we do a series of triangle vs point collision detections

Here’s the code:

Listing 56: Polygon vs Point collision detection

1 // ...

2 function polygon_point(Polygon poly , Point point) -> bool{

3 // First of all , we get the polygon 's bounding box

4 Rectangle bounding_box = poly.calculate_bounding_box ();

5 // Then we do a simple point vs. rectangle check

6 i f (not point_rectangle(bounding_box , point)){

7 // We are not even in the bounding box , we can't collide

8 return False;

9 }

10 // If instead we are in the bounding box , we need to get the "fan triangulation"

11 Triangle [] triangles = poly.do_fanning ();

12 // Now we check , for each triangle , if the point collides

13 for (triangle in triangles){

14 i f (point_triangle(triangle , point)){

15 // We found the "slice" of the polygon that the point collides with

16 return True;

17 }

18 }

19 // If we pass all triangles without a hit , we are in the bounding box

20 // but outside the polygon , that's the worst case , and we are not colliding

21 return False;

22 }

9.2.12.4.3 Performance analysis

The algorithm seems fairly simple, but we may want to check its performance to see how efficient it is. In this

analysis n will be the number of vertices, while m is the number of triangles.

The best case is that the point we’re testing is outside the polygon’s bounding box: this means that we calculate the

bounding box (which is Θ(n)) and we check the point against it (which is Θ(1)), thus our best case (lower bound)

is Ω(n).

The worst case is when the whole algorithm is performed to the end, which means the point is inside the bounding

box, but outside the polygon: this means we calculate the bounding box (Θ(n)), check against it (Θ(1)), do the “fan

triangulation” (Θ(n)), check each triangle without finding any collision (O(m)) and get to the end. Out worst case

(upper bound) is O(n+m).

Considering the fact that the number of triangles m is tied to the number of vertices n by the formula (valid for simple

convex polygons)

9 COLLISION DETECTION AND REACTION 225



2D Game Development: From Zero To Hero

m = n− 2

We have an upper bound of O(n+m) = O(n+ n− 2) =∼ O(n), this is because the constant gets “squashed by

the linear behaviour” of n, and 2 · n behaves asymptotically in the same way as n when the dataset grows.

Even though we have a tight bound ofΘ(n) in our entire algorithm (which means the amount of calculations goes up

slowly with the addition of new vertices), we need to be mindful of the amount of calculation that is done, including

some heavy operations like square roots.

9.2.13 Circle/Polygon Collision

Now that we got one of the hardest topics out of the way, we can focus on other types of collision detection between

arbitrary convex polygons: one of those is the “circle vs polygon” collision detection.

Let’s see an example image first:

A

B

C

D

Figure 164: Example image used for circle/polygon collision detection

Here we can see four different cases of collision (or lack thereof) between a circle and a polygon (if you’re particularly

acute, you may have noticed we’re missing a 5th case, but we’ll talk about it shortly):

• Case A: The circle is completely inside the polygon;

• Case B: The circle is partially inside the polygon, with the center being inside the polygon;

• Case C: The circle is partially inside the polygon, with the center being outside the polygon;

• Case D: The circle is completely outside the polygon.

Case A and B can be solved together with a point/polygon check, where the point is the center of the circle, while

case C can be solved by a line/circle check between the circle and all the edges of the polygon.

What about the “missing 5th case”? Here it is:

9 COLLISION DETECTION AND REACTION 226



2D Game Development: From Zero To Hero

Figure 165: An edge case of the circle/polygon check

In this case the circle contains the polygon completely, with its center outside of the polygon area, so the check

used in cases A and B wouldn’t work and neither would the one used in case C.

This is a really rare edge-case, since usually the game does its checks so fast that you’d end up in case C long before

this edge-case sees the light of day. In the event this happens, we just need to check if any of the vertices of the

polygon is inside the circle.

Here’s the full algorithm:

Listing 57: Polygon vs Circle collision detection

1 // ...

2 function circle_polygon(Polygon poly , Circle circ) -> bool{

3 // Case C (and partly B) are less resource -intensive than

4 // a point/polygon check , so let's do them first

5 for (i from 0 to poly.vertices.length () - 1){

6 // We iterate through all the vertices

7 in t j = i + 1;

8 // If we get to the end , we wrap around j

9 i f (j==poly.vertices.length ()){

10 j = 0;

11 }

12 Line temp_line = Line.fromPoints(poly.vertices[i], poly.vertices[j]);

13 // In case we find a hit , we already know there is a collision

14 i f (line_circle_collision(circ , temp_line)){

15 return True;

16 }

17 }

18 // Now Let's check for cases "A" and "B"

19 i f (polygon_point(poly , circ.center)){

20 // If the center is inside the polygon , we have a collision

21 return True;

22 }

23 // Now let's check for the rare edge -case: if this case happens , all the vertices

24 // are inside the circle , so we can only check one of them

25 i f (circle_point_collision(circ , poly.vertices [0])){

26 // If any vertex is inside the circle , we have a collision , so we check the first

9 COLLISION DETECTION AND REACTION 227



2D Game Development: From Zero To Hero

27 return True;

28 }

29 // If none of the checks above returned , we don't have a collision (case D)

30 return False;

31 }

9.2.14 Line/Polygon Collision

The line vs polygon collision detection algorithm is not really different from the ones we have seen previously. Let’s

take a look at an image with all the cases we can think about:

AB

CD

EF

G
H

Figure 166: Example image used for line/polygon collision detection

Here we can see 4 cases (this time for real):

• Line AB: The segment is completely inside the polygon (including its ends);

• Line CD: The segment is partially inside the polygon (one of its ends is inside the polygon);

• Line EF : The segment crosses the polygon, but both its ends are outside the polygon;

• Line GH: The segment is completely outside the polygon;

We can solve the cases involving the linesAB and CD by checking if either of the ends is inside the polygon, using

a point/polygon collision check.

The case involving the line EF can be solved by a line/line collision check between the EF and all the edges of the

polygon.

Let’s take a look at the full algorithm:

Listing 58: Polygon vs Line collision detection

1 // ...

2 function line_polygon(Line line , Polygon poly) -> bool{

3 // First of all , let's check if either of the line ends are inside the polygon

4 // This covers cases AB and CD

5 i f (polygon_point(poly , line.A)){

6 // One of the ends is inside the polygon , we have a hit

7 return True;

8 }

9 COLLISION DETECTION AND REACTION 228



2D Game Development: From Zero To Hero

9 i f (polygon_point(poly , line.B)){

10 // One of the ends is inside the polygon , we have a hit

11 return True;

12 }

13 // Now we check for case EF

14 for (i from 0 to poly.vertices.length () - 1){

15 // We iterate through all the vertices

16 j = i + 1;

17 // If we get to the end , we wrap around j

18 i f (j == poly.vertices.length ()){

19 j = 0;

20 }

21 Line temp_line = Line.fromPoints(poly.vertices[i], poly.vertices[j]);

22 i f (line_line_collsion(temp_line , line)){

23 return True;

24 }

25 }

26 i f (line_line_collision(temp_line , line)){

27 return True;

28 }

29 // If none of the previous checks was triggered , we don't have a collision

30 return False;

31 }

9.2.15 Polygon/Polygon Collision

Here we are, the final frontier, polygon vs polygon collision detection. We went through a lot of pages of notions and

reasoning to get here, now we have the tools to undertake one of the more complex collision detection methods.

Remember: we are checking if two convex polygons are colliding, let’s see an example image first.

C

A

B

D

E

Figure 167: Example image used for polygon/polygon collision detection

We can see 4 cases here, from the simplest to the hardest:

• The Square D is outside the polygon;

• The Pentagon B is completely inside the polygon

9 COLLISION DETECTION AND REACTION 229



2D Game Development: From Zero To Hero

• The Octagon E is colliding with the heptagon C and a vertex of C is inside of E;

• The heptagon C is colliding with the hexagon A, but none of the vertices of C are inside of A;

We can easily solve the cases involving A and E with a “polygon vs line” collision detection, while the case involving

B can be checked by doing a “polygon vs point” check.

Let’s take a look at the algorithm:

Listing 59: Polygon vs Polygon collision detection

1 // ...

2 function polygon_polygon(Polygon p1, Polygon p2) -> bool{

3 // First we do a polygon vs line check for all the edges

4 for (i from 0 to p2.vertices.length () - 1){

5 in t j = i + 1;

6 i f (j == p2.vertices.length ()){

7 // Wrap around in case we get to the end

8 j = 0;

9 }

10 Line temp_line = Line.fromPoints(p2.vertices[i], p2.vertices[j])

11 i f (polygon_line(p1, temp_line)){

12 // We have a hit

13 return True;

14 }

15 }

16 // Now we check in case one polygon contains the other , we can just check a single vertex

17 i f (polygon_point(p1, p2.vertices [0]) or polygon_point(p2, p1.vertices [0])){

18 return True;

19 }

20 // None of the checks was triggered , there is no collision

21 return False;

22 }

As you can see, the algorithm is quite short, but it builds on a lot of previous algorithms that we already studied, so

there is a lot of “hidden complexity” behind these few rows of code.

Tip!

We can make the algorithm perform a bit better by adding a check between the (axis

aligned) bounding boxes first: this will drastically reduce the amount of “line vs poly-

gon” and “point vs polygon” checks, at the expense of a slightly heavier algorithm

when a collision happens.

9.2.16 Non-convex polygons collision

Let’s go back to our previous example, using a non-convex polygon: we have an “inside point” and two points to

test, one inside and one outside.

9 COLLISION DETECTION AND REACTION 230



2D Game Development: From Zero To Hero

P

Q1

Q2

Figure 168: How a non-convex polygon still makes everything harder

The trick is counting the number of times our “segment between the points” hits the perimeter of the polygon:

P

Q1

Q2

Figure 169: Counting how many times we hit the perimeter gives us the result

If the number of “hits” is odd, we know the point tested is outside, if the number of “hits” is even, the point is inside

the polygon.

The previous statement fails when we hit a vertex in our way: we can’t really count it as a “double hit”, because

there’s the possibility that we are hitting it while “entering” the polygon.

9 COLLISION DETECTION AND REACTION 231



2D Game Development: From Zero To Hero

P

Q1

Q2

Figure 170: Issues with vertices make everything even harder

If we counted the vertex hit as a “double hit”, we would end up having a point “inside the polygon” figuring as a

“point outside the polygon”.

The complications and edge cases are many and beyond the scope of this book, so we’ll stop here and instead

continue with the ways we discussed earlier.

9.2.16.1 Polygon triangulation: the return

We can extend the reasoning we made with simple convex polygons earlier to all simple polygons (so we can include

non-convex ones too): any non-self-intersecting polygon without holes can be decomposed into triangles.

The only limitation we have is the method: the “fan triangulation” method works only with convex polygons and a

very limited set of non-convex ones; so we need to find a different way of triangulating those polygons.

Figure 171: Triangulating a non-convex polygon

Triangulation methods include “ear clipping” and “monotone polygon triangulation”, but their implementation is

beyond the scope of this book.

9 COLLISION DETECTION AND REACTION 232



2D Game Development: From Zero To Hero

Tip!

You can always take any type of polygon (even with holes) and decompose it into

a bunch of convex polygons that can be fan-triangulated. Many graphical libraries

represent polygons based on the fan-triangulation method.

9.2.17 Pixel-Perfect collision

Pixel perfect collision is the most precise type of collision detection, but it’s also by far the slowest.

The usual way to perform collision detection is using bitmasks which are 1-bit per pixel representation of the sprites

(white is usually considered a “1” while black is considered a “0”).

Figure 172: Two Bitmasks that will be used to explain pixel-perfect collision

A logic “AND” operation is performed, pixel-by-pixel, on the bitmasks; with the sprite position taken in consideration,

as soon as the first AND operation returns a “True” a collision occurred.

Figure 173: Two Bitmasks colliding, the ‘AND’ operations returning true are highlighted in white

Listing 60: Example of a possibile implementation of pixel perfect collision detection

1 class Color{

2 in t colorData;

3 bool function isWhite ();

4 }

5

6 structure Bitmask{

7 Color [] data;

8 Color getColor(x, y);

9 }

10

11 structure Sprite{

9 COLLISION DETECTION AND REACTION 233



2D Game Development: From Zero To Hero

12 Bitmask bitmask;

13 in t x;

14 in t y;

15 in t width;

16 in t height;

17 }

18

19 function pixel_perfect_collision(Sprite A, Sprite B) -> bool{

20 // Calculate the intersecting rectangle to limit checks

21 in t x1 = max(A.x, B.x);

22 in t x2 = min((A.x + A.width), (B.x + B.width));

23

24 in t y1 = max(A.y, B.y);

25 in t y2 = min((A.y + A.height), (B.y + B.height));

26

27 // For each pixes in the intersecting rectangle , let's check

28 for (each y from y1 to y2){

29 for (each x from x1 to x2){

30 a = A.bitmask.getColor(x - A.x, y - A.y);

31 b = B.bitmask.getColor(x - B.x, y - B.y);

32

33 i f (a.isWhite () AND b.isWhite ()){

34 return True;

35 }

36 }

37 }

38

39 // If no collision is occurred by the end of the checking , we're safe

40 return False;

41 }

This algorithm has a time complexity of O(n ·m) where n is the total number of pixels of the first bitmask, whilem

is the total number of pixels in the second bitmask.

9.3 Broad-phase collision detection: is a collision even possible?

Now we need to find which game objects collided, and this can be easily one of the most expensive parts of our

game, if not handled correctly.

This section will show how knowing which items will surely not collide can help us optimize our algorithms.

We need to remember that each object (as good practices suggest) know only about themselves, they don’t have

“eyes” like us, that can see when another object is approaching them and thinking “I’m gonna collide”. The only

thing we can do it having “someone else” take care of checking for collisions.

As an example, we’ll take the following situation:

9 COLLISION DETECTION AND REACTION 234



2D Game Development: From Zero To Hero

Figure 174: Example for collision detection

We can evidently see how circles 1 and 2 are colliding, but obviously our game won’t just “know” without giving it a

way to think about how two objects collide.

9.3.1 The Brute Force Method

The simplest method is the so-called “brute force” method: you don’t know which items may collide? Just try them

all.

So if we consider a list of 7 game objects, we’ll need to see if 1 collides with 2, 1 collides with 3, …, 2 collides with

1, …

An algorithm of this type could be the following:

Listing 61: Brute Force Method of collision search

1 function is_collision(Item A, Item B) -> bool{

2 // Defines how two items collide (being circles , this could be a difference of radii)

3 // ...

4 }

5

6 Item[] items = [item1 , item2 , ...];

7

8 function get_colliding_items(Item[] items_to_check) -> Item []{

9 Item[] colliding_items = [];

10

11 for (A in items_to_check){

12 for (B in items_to_check){

13 i f (A i s not B){

14 // We avoid checking if an item collides with itself , for obvious reasons

15 i f (is_collision(A, B)){

16 // We keep together the pair of items that collided

17 colliding_items.add(new pair(A, B));

18 }

19 }

20 }

21 }

9 COLLISION DETECTION AND REACTION 235



2D Game Development: From Zero To Hero

22 return colliding_items;

23 }

This algorithms runs in O(n2), because it checks every item with every other, even with itself.

In this example, the algorithm completes in 49 steps, but you can imagine how a game could slow down when there

is an entire world to update (remember the collision detection, among with other updates and rendering/drawing,

must happen in less than 16.67 and 33.33ms, so if you can save time, you totally should).

9.3.2 Building Quad Trees

A nice idea would be being able to limit the number of tests we perform, since the brute force method can get really

expensive really quickly.

When building quad-trees, we are essentially dividing the screen in “quadrants” (and if necessary, such quadrants

will be divided into sub-quadrants), detect which objects are in such quadrants and test collisions between objects

that are inside of the same quadrant.

Figure 175: Graphical example of a quad tree, overlaid on the reference image

And here below we can see how a quad tree would look, in its structure:

5

1,2 3 4 6,7

Root

A B C D

Figure 176: A quad tree

9 COLLISION DETECTION AND REACTION 236



2D Game Development: From Zero To Hero

The rules to follow in a quad tree are simple, both in filling and retrieval. When we are filling a quad tree:

• Each node starts by being inserted in the root;

• If the root is “full” (exceeds a set quantity of nodes), it “splits” into 4 sub-trees;

• If a node would fit in two quadrants (like #5), it gets put inside the parent of both quadrants.

When we are retrieving the nodes we will know that an object inside a certain node can collide only with the objects

in the same nodes or in the subtree rooted at such node.

With the original brute force method, we will make at most 49 tests for 7 items (although it can be optimized), while

with quad trees we will perform:

• 6 Tests against node 5 (5-1, 5-2, 5-3, 5-4, 5-6, 5-7);

• 1 Test against node 1 (1-2);

• 1 Test against node 2 (2-1);

• No tests against node 3, because it’s on its own and there are no subtrees;

• No tests against node 4, for the same reason;

• 1 Test against node 6 (6-7);

• 1 Test against node 7 (7-6).

For a total of 10 tests, which can be further optimized by avoiding testing pairs of objects that have already been

tested. But this is if we want to test all objects for collision against all other objects (thus it is a somewhat more

optimized “brute force”).

9.3.2.1 A more precise definition

To be more precise, quad-trees are part of the group of “spatial acceleration structures”. They are structures that

are usually used on top of other containers (like arrays) to accelerate or reduce the number of accesses.

For example, you may have an existing array and using pointers you can use a quad-tree to quickly refer to the place

in memory a certain object is.

Figure 177: Quad trees as spacial acceleration structures

Redundancy will help us making things quicker and easier, adding a pointer from the underlying data structure back

to the quad-tree will help us understanding where an object is positioned.

9 COLLISION DETECTION AND REACTION 237



2D Game Development: From Zero To Hero

Figure 178: Redundancy in quad-tree pointers

9.3.2.2 Querying quad trees

Where quad trees shine is when we have an object and we want to check for collisions with any other object.

Using our “back pointer” we can refer back to the quad tree and severely limit the number of collision tests: any

object will be able to collide only with its ancestors or descendants.

[This section is a work in progress and it will be completed as soon as possible]

9.3.3 Building AABB-Trees

Another way to efficiently execute a broad-phase collision detection is by building trees containing Axis-Aligned

Bounding Boxes.

The main idea is similar to what we’ve seen with binary search trees, mixed with the quad-trees we’ve just talked

about: we are trying to keep track of objects that are close together (like Quad-Trees do) and when searching, we

try to eliminate a good portion of data each time we descend the tree (similarly to binary search trees).

This is done by calculating a “cost function” every time we insert an object into the tree: our objective is making the

cost as little as possible. An idea for the cost function could be the size of the rectangle (expressed by its perimeter,

or just width+ height).

Our example image, would be represented this way:

9 COLLISION DETECTION AND REACTION 238



2D Game Development: From Zero To Hero

Figure 179: How an AABB-tree would process our example image

This can look a bit confusing, let’s see how the tree would look like:

1 2 6 7 3 4 5

Figure 180: How a possible AABB-tree structure would look like

The performance of this tree is tightly related to its “balancing”: differently from other types of “balanced trees”,

AABB-trees rely on how evenly each parent node is split by its children (instead of the usual “depth” metric). If

an AABB-tree doesn’t split evenly, the algorithm won’t be able to “exclude” as many nodes on each iteration, thus

degrading to a brute-force method (trying the given AABB against all other bounding boxes).

9.3.3.1 Querying AABB-trees

The idea behind this type of tree is making queries as fast as we can, and that can be done by checking on smaller

rectangles on every iteration of our search algorithm. For instance we can find a list of possible colliding entities

with a given bounding box in only a few tests (in our example).

Let’s take for instance a circle “P” that is exactly between the points 3 and 4:

9 COLLISION DETECTION AND REACTION 239



2D Game Development: From Zero To Hero

P

Figure 181: Example of a search in an AABB-Tree

First we do the root test, to see if it may collide with any of the 7 circles we have (if it was outside of the green

rectangle, we would have finished already). Then we do the “left (cyan) child” test, in this case we’re not colliding

with the relative bounding box, so we keep going.:

P

Figure 182: Querying an AABB-tree (1/3)

This way we excluded 1,2,6, and 7. We now do the “right (cyan) child” test, we’re colliding with the relative bounding

box, we continue on this branch.

9 COLLISION DETECTION AND REACTION 240



2D Game Development: From Zero To Hero

P

Figure 183: Querying an AABB-tree (2/3)

We do the “left (red) child” test, we’re colliding with the relative bounding box, now we can do a narrow-phase

collision detection with the leaves of this node (and in the meantime we also excluded 5).

P

Figure 184: Querying an AABB-tree (3/3)

[This section is a work in progress and it will be completed as soon as possible]

9.3.4 Collision groups

[This section is a work in progress and it will be completed as soon as possible]

9 COLLISION DETECTION AND REACTION 241



2D Game Development: From Zero To Hero

9.4 Other Collision Detection Methods

9.4.1 Calculating the position of tiles

When you are using tiles to build a level, being able to use quad trees or brute force methods to limit the number of

collision checks inside your game may be harder than other methods.

Using a bit of math is probably the easiest and most efficient method to find out which collisions happened.

Let’s take an example level:

Figure 185: Example tile-based level

If a game entity is falling, like in the following example:

Figure 186: Tile-based example: falling

Using the simple AABB collision detection, we will need to check only if the two lowest points of the sprite have

collided with any tile in the level.

First of all let’s consider a level as a 2-dimensional array of tiles and all the tiles have the same size, it is evident

9 COLLISION DETECTION AND REACTION 242



2D Game Development: From Zero To Hero

that we have two game entities that work with different measures: the character moves pixel-by-pixel, the ground

instead uses tiles. We need something to make a conversion.

Assuming TILE_WIDTH and TILE_HEIGHT as the sizes of the single tiles, we’ll have the following function:

Listing 62: Converting player coordinates into tile coordinates

1 constant TILE_WIDTH = 32;

2 constant TILE_HEIGHT = 32;

3

4 function convert_pixels_to_tile( in t x, in t y) -> in t []{

5 // Converts a point into tile coordinates

6 in t tile_x = floor(x / TILE_WIDTH);

7 in t tile_y = floor(y / TILE_HEIGHT);

8 return [tile_x , tile_y ];

9 }

To know which tiles we need to check for collision, we just have to check the two red points (see the previous image),

use the conversion function and then do a simple AABB check on them.

Listing 63: Tile-based collision detection

1 constant TILE_WIDTH = 32;

2 constant TILE_HEIGHT = 32;

3

4 structure Rectangle{

5 // A rectangle will represent the player

6 Point corner;

7 in t width;

8 in t height;

9 }

10

11 function convert_pixels_to_tile( in t x, in t y) -> in t []{

12 // Converts a point into tile coordinates

13 in t tile_x = floor(x / TILE_WIDTH);

14 in t tile_y = floor(y / TILE_HEIGHT);

15 return [tile_x , tile_y ];

16 }

17

18 // We assume the player is falling , so no check will be shown here

19 Point[] points_to_check = [

20 Point(player.corner.x, player.corner.y + player.height),

21 Point(player.corner.x + player.width , player.corner.y + player.height),

22 ]

23 for (each point in points_to_check){

24 in t [] detected_tile_coordinates = convert_pixels_to_tile(point.x, point.y)

25 Tile detected_tile = get_tile(detected_tile_coordinates [0], detected_tile_coordinates [1])

26 i f (AABB(player , detected_tile.rectangle)){

27 // React to the collision

28 // ...

9 COLLISION DETECTION AND REACTION 243



2D Game Development: From Zero To Hero

29 }

30 }

Considering that this algorithm calculates its own colliding tiles, we can state that its complexity is O(n) with n equal

to the number of possibly colliding tiles calculated.

If an object is bigger than a single tile, like the following example:

Figure 187: Example tile-based level with a bigger object

We will need to calculate a series of intermediate points (using the TILE_WIDTH and TILE_HEIGHT measures) that will be

used for the test

Figure 188: Tile-based example with a bigger object: falling

And using the same method the colliding tiles can be found without much more calculations than the previous

algorithm, actually we can use exactly the same algorithm with a different list of points to test.

9 COLLISION DETECTION AND REACTION 244



2D Game Development: From Zero To Hero

9.4.2 The “Tile + Offset” Method

This is a really good trick that works well for games that are heavily based on grids: the player can move only in the

four cardinal directions and movement is tile-based.

By “tile-based movement” I mean that if you press any direction for even the smallest amount of time (even a single

frame), the player will move in that direction by a tile (however big it may be).

The idea behind this kind of collision detection is very simple: some tiles are marked as walls. When the player

wants to move in a certain direction, the game will check the tile in the chosen direction, if it’s a wall the movement

will be blocked, if it’s passable the game will tween (usually using an offset parameter) the player travelling between

tiles.

Listing 64: Tile + Offset collision detection

1 class TiledPlayer{

2 Vector2D offset = new Vector2D(0, 0);

3 Vector2D current_position = new Vector2D (10, 10);

4 Vector2D next_position = new Vector2D (10, 10);

5

6 function update( f l oat dt){

7 // ...

8 // Check which direction is the player going

9 i f (KEYBOARD.Up_Arrow_Pressed){

10 this.offset.y = -1;

11 }

12 i f (KEYBOARD.Down_Arrow_Pressed){

13 this.offset.y = 1;

14 }

15 i f (KEYBOARD.Right_Arrow_Pressed){

16 this.offset.x = 1;

17 }

18 i f (KEYBOARD.Left_Arrow_Pressed){

19 this.offset.x = -1;

20 }

21 // Get the destination tile

22 this.next_position = this.current_position + this.offset;

23 // Is the tile a wall?

24 i f (not MAP.get_tile(this.next_position).isWall ()){

25 // No , move the player to the new tile

26 this.current_position = this.next_position;

27 }

28 // ...

29 }

30 }

This code shows only how to update the internal status of the player, which is what we care about. As you can

see, the code is extremely simple, which makes for a great collision detection algorithm that doesn’t use a lot of

resources. This algorithm can be extended and improved by handling collision with anything else that isn’t a wall

9 COLLISION DETECTION AND REACTION 245



2D Game Development: From Zero To Hero

(maybe enemy units?).

9.5 Collision Reaction/Correction

When you are sure, via any algorithm, that a collision has occurred, you now have to decide how to react to such

collision. You may want to destroy the player or the target, or you may want to correct the behaviour, thus avoiding

items getting inside walls.

9.5.1 HitBoxes vs HurtBoxes

First of all, we need to explain the difference between a “HurtBox” and a “HitBox”.

Such difference can be more or less important, depending on the game that is coded, and sometimes the two

concepts can be confused.

A HitBox is a shape (usually a rectangle, see Collision Between Two Axis-Aligned Rectangles (AABB)) that is used

to identify where a certain entity can hit another entity. For the player a “hitbox” could encase their sword while

attacking.

A HurtBox is instead a shape that is used to identify where a certain entity can get hurt by another entity. For the

player a “hurtbox” could be their body.

Figure 189: Example of a hitbox (red) and a hurtbox (blue)

9.5.2 Collision Reaction Methods

It has happened: a collision occurred and now the two objects are overlapping.

How do we react to this event in a convincing (not necessarily “realistic”) and efficient manner? There are a lot of

methods to react to collisions and below we will show some of the most used, along with some interesting ones.

We will use the following image as reference for each collision reaction:

9 COLLISION DETECTION AND REACTION 246



2D Game Development: From Zero To Hero

Figure 190: Images used as a reference for collision reaction

We will study each case separately, at the time the collision is detected (so the two objects are already interpene-

trating), and each case will be a piece of this reference image.

9.5.2.1 A naive approach

This is the simplest method we can think of: as soon as the object gets inside of a wall, you push it back to one of

the edges of the block, while keeping an eye on the direction it’s moving.

9.5.2.1.1 How it works

This works when you treat the x and y axis separately, updating one, checking the collisions that come up from it,

update the other axis and check for new collisions.

Listing 65: Code for the naive collision reaction

1 // Naive collision reaction with rectangles

2 function update( f l oat dt){

3 // ...

4 player.position = player.position + player.speed * dt;

5 // Refer to your favourite collision detection and broad/fine passes

6 i f (collision(player , object)){

7 i f (player.x_speed > 0){ // going right

8 player.position.x = object.rectangle.left; // reset position

9 player.x_speed = 0; // stop the player

10 }

11 i f (player.x_speed < 0){ // going left

12 player.position.x = object.rectangle.right; // reset position

13 player.x_speed = 0; // stop the player

14 }

15 }

16 // Again , refer to your favourite collision detection and broad/fine passes

17 i f (collision(player , object)){

18 i f (player.y_speed > 0){ // going down

19 player.position.y = object.rectangle.top; // reset position

20 player.y_speed = 0; // stop the player

9 COLLISION DETECTION AND REACTION 247



2D Game Development: From Zero To Hero

21 }

22 i f (player.y_speed > 0){ // going up

23 player.position.y = object.rectangle.bottom; // reset position

24 player.y_speed = 0; // stop the player

25 }

26 }

27 // ...

28 }

9.5.2.1.2 Analysis

Let’s see how this method reacts in each situation.

When we are trying to slam against the wall, this method works as follows:

React on the X Axis
No need to react on the
Y Axis, collision is resolved

Figure 191: How the naive method reacts to collisions against a wall

1. We separate our position vector in its x and y components.

2. We check for collisions, and if so, we react on the x axis in a direction opposite to the x component of the

velocity.

3. We check for collisions again, if there are any, we react on the y axis, in a direction opposite to the y component

of the velocity.

9.5.2.1.3 Problems

Problems arise when we try to use the samemethod to react to a collision on a horizontal plane. In that case reacting

on the x axis first will bring some unexpected surprises.

9 COLLISION DETECTION AND REACTION 248



2D Game Development: From Zero To Hero

Reacting on the X axis
doesn't look right

Figure 192: How the naive method reacts to collisions against the ground

We need to find a way to decide which axis we should correct first.

9.5.2.2 Shallow-axis based reaction method

This method works in a similar fashion to the naive method, but prioritizes reactions on the axis that shows the

shallowest overlap.

This requires measuring how much the objects overlap on each axis, which can be a little more involved, but not

really expensive.

2

1

Figure 193: Example of shallow-axis based reaction on a horizontal plane

In the previous picture, we can see how the algorithm chooses to solve the collision on the y axis first and only on

the x axis after; but since solving the y axis solves the collision, no reaction is performed on the x axis.

9 COLLISION DETECTION AND REACTION 249



2D Game Development: From Zero To Hero

1

2

Figure 194: Example of shallow-axis based reaction on a vertical plane

In this new situation, the algorithm chooses to solve the collision on the x axis first; but since solving the x axis

solves the collision, no reaction is performed on the y axis.

Listing 66: Possible implementation for a shallow axis collision reaction

1 function solve_collision(player , object){

2 /*

3 * This algorithm solves a collision between the player

4 * and an unmovable object

5 * We are assuming the player is moving

6 */

7 // The overlap will help us decide how to react

8 Vector2D overlap = get_overlap(player , object);

9 i f (overlap.x > overlap.y){

10 // Y is the "shallow axis"

11 i f (player.speed.y > 0){

12 // Player is going towards the bottom of screen

13 player.rect.bottom = object.rect.top;

14 }else{

15 // Player is going towards the top of the screen

16 player.rect.top = object.rect.bottom;

17 }

18 }else{

19 // X is the "shallow axis"

20 i f (player.speed.x > 0){

21 // Player is going right

22 player.rect.right = object.rect.left;

23 }else{

24 // Player is going left

25 player.rect.left = object.rect.left;

26 }

27 }

28 }

9 COLLISION DETECTION AND REACTION 250



2D Game Development: From Zero To Hero

9.5.2.3 Interleaving single-axis movement and collision detection

This is a method quite simple to understand: you split the movement in its x and y components, move on the first

component, check and react, move on the other component, check and react again.

9.5.2.3.1 How it works

This works by treating the x and y axes separately, updating one, checking the collisions that come up from it,

update the other axis and check for new collisions.

Listing 67: Code for interleaving movement and collision reaction

1 // Interleaving movement and collision reaction with rectangles

2 function update( f l oat dt){

3 // ...

4 player.position.x = player.position.x + player.x_speed * dt;

5 // Refer to your favourite collision detection and broad/fine passes

6 i f (collision(player , object)){

7 i f (player.x_speed > 0){ // going right

8 player.position.x = object.rectangle.left; // reset position

9 player.x_speed = 0; // stop the player

10 }

11 i f (player.x_speed < 0){ // going left

12 player.position.x = object.rectangle.right; // reset position

13 player.x_speed = 0; // stop the player

14 }

15 }

16 player.position.y = player.position.y + player.y_speed * dt;

17 // Again , refer to your favourite collision detection and broad/fine passes

18 i f (collision(player , object)){

19 i f (player.y_speed > 0){ // going down

20 player.position.y = object.rectangle.top; // reset position

21 player.y_speed = 0; // stop the player

22 }

23 i f (player.y_speed > 0){ // going up

24 player.position.y = object.rectangle.bottom; // reset position

25 player.y_speed = 0; // stop the player

26 }

27 }

28 // ...

29 }

9.5.2.3.2 Analysis

Let’s see how this method reacts in each situation.

When we are trying to fall on the ground, this method works as follows:

9 COLLISION DETECTION AND REACTION 251



2D Game Development: From Zero To Hero

1 2 3 4

Figure 195: How the the interleaving method reacts to collisions on a horizontal plane

1. We divide the movement vector in its x and y components.

2. We move along the x axis and check for collisions, in this case there are none.

3. We move along the y axis, after checking for collisions we find that we are colliding on the ground.

4. We react to the collision by moving the sprite on top of the ground.

9.5.2.4 The “Snapshot” Method

This method is a bit more involved, but allows for a finer control over how you go through or collide with certain

obstacles.

The secret to this method is taking a snapshot of the object’s position before its update phase and do a series of

comparisons with the position after the update.

Listing 68: Example of the ”snapshot” collision reaction method

1 // Snapshot collision reaction

2 // All the sprite origins are on the top -left corner of the entity

3 Player snapshot = player_instance.copy(); // The "snapshot"

4

5 // Update the player_instance here

6 player_instance.position = player_instance.position + (velocity * dt);

7

8 // Now check for collisions

9 ...

10 for (each block colliding with player_instance){

11 i f (( snapshot.y >= block.y + block.height) AND (player_instance.y < block.y + block.height))

{

12 // We are coming on the block from below , react accordingly

13 // Ignoring this reaction will allow players to phase through blocks when coming from

below

14 player_instance.position.y = block.y + block.height;

15 }

16

17 i f (( snapshot.y + snapshot.height <= block.y) AND (player_instance.y + snapshot.height >

block.y)){

18 // We are coming on the block from above

19 player_instance.position.y = block.y;

20 player_instance.on_ground = true;

21 }

22

23 i f (( snapshot.y + snapshot.width <= block.x) AND (player_instance.x > block.x)){

9 COLLISION DETECTION AND REACTION 252



2D Game Development: From Zero To Hero

24 // We are coming on the block from left

25 player_instance.position.x = block.x - player_instance.width;

26 }

27

28 i f (( snapshot.y >= block.x + block.width) AND (player_instance.x < block.x + block.width)){

29 // We are coming on the block from right

30 player_instance.position.x = block.x + block.width;

31 }

32 }

This method solves the problem given by platforms that can be crossed one-way, since (differently from methods

based on the direction of velocity) you have an additional information: if you were colliding with the object in the

previous frame.

[This section is a work in progress and it will be completed as soon as possible]

9.5.3 When two moving items collide

So far we’ve seen methods that involve a moving object colliding with a stationary one, but what if we wanted to

react to a collision between two moving objects?

Some more math will be needed but it’s not extremely difficult to pull off.

First of all, we need to find the “collision vector” (we’ll call that ucoll), which is simply a vector that is calculated

using the difference of the objects’ positions. We’ll need just the direction, so we will normalize it too (so it will

become ûcoll).

Let’s imagine two objects, with the following positions: A(x1, y1) and B(x2, y2)

ucoll = (x2 − x1, y2 − y1)

ûcoll =
u

||u||

Now we need to know how the objects are moving in relation to each other, this will allow us to see if and how we

need to react. Let’s calculate the “relative velocity” of the objects.

vrel = (vx2 − vx1, vy2 − vy1)

Now we need to see how the relative velocity affects the collision, which means we need to project such velocity

onto the collision vector. Sounds like a job for the dot product.

s = ûcoll · vrel

9 COLLISION DETECTION AND REACTION 253



2D Game Development: From Zero To Hero

s can be called “the speed of collision” (it’s a scalar number, not a vector) and tells us what we need to know: if

s < 0 then the objects are moving away from each other already and we don’t need to do anything. If s > 0 then

the objects are moving towards each other

To react to objects that are moving towards each other, we just need to change their velocity by a factor of s · ûcoll.

[This section is a work in progress and it will be completed as soon as possible]

9.6 Common Issues with time-stepping Collision Detection

The methods we saw so far when checking for collisions are called “time-stepping techniques” due to the fact that

each loop we “take a snapshot” of the situation and analyze it, this opens the door to a series of issues that may be

annoying and we may find in our game development endeavors.

9.6.1 The “Bullet Through Paper” problem

The “bullet through paper” (sometimes called “tunneling”) is a common problem with collision detection, when an

obstacle is really thin (our “paper”), and the object is really fast and small (the “bullet”) it can happen that collision

is not detected.

Figure 196: Example of the “Bullet through paper” problem

The object is going so fast that it manages to go through the entirety of the obstacle in a single frame.

Possible solutions to this problems are various, some even going out of the realm of the so-called “time-stepping

techniques” (like speculative contacts or ray casting) that can be very expensive from a computational standpoint.

Such solutions should therefore be enabled (or implemented) only for fast-moving objects and only if necessary,

since resources and time are at a premium in most cases.

9.6.2 Precision Issues

Sometimes it can happen that the position is reset incorrectly due to machine precision or wrong rounding, this can

lead to the character that looks spazzy or just going through the floor at random times. The solution to these issues

is making sure that the position and state are set correctly so that there are no useless state changes between

frames.

9 COLLISION DETECTION AND REACTION 254



2D Game Development: From Zero To Hero

Sometimes the “spazziness” of the character derives from the fact that collision reaction sets the character one

pixel over the floor, triggering the “falling” state, the next frame the state would be changed to “idle” and then in

the frame “n+2” the cycle would restart with collision reaction putting the character one pixel over the floor.

9.6.3 One-way obstacles

Some of the methods exposed can be used only with completely solid obstacles. If you want to make use of platforms

that you can cross one-way you should pay attention, since you may get teleported around when your velocity

changes direction.

Figure 197: How velocity changing direction can teleport you

In the previous example we try to jump on a platform by going through it, but our jump quite doesn’t make it. Since

velocity has changed direction, we end up being teleported over the platform, which is considered a glitch.

9.7 Separating Axis Theorem

We have taken an in-depth look at a series of specialized algorithms, but there is a more generic theorem that allows

us to determine if two convex polygons are colliding: The Separating Axis Theorem or SAT. This theorem states:

If two convex objects are not penetrating, there exists an axis for which the projection of the objects will not

overlap.

This is connected to a simpler “human” explanation, which is:

If two convex polygons are not colliding, then you can draw a straight line between them.

9 COLLISION DETECTION AND REACTION 255



2D Game Development: From Zero To Hero

Figure 198: Example of how you can draw a line between two convex non-colliding polygons

Before delving further into the matter, let’s see what we need to know:

• The difference between a Convex and a Concave Polygon

• What a Projection is

• Some Vector Maths

9.7.1 Why only convex polygons?

To explain this, we’ll use the “human explanation”: if one of the shapes is concave, there is a possibility that the

polygons are not colliding, but we cannot draw a straight line between them.

Figure 199: Why the SAT doesn’t work with concave polygons

Thus our algorithm would return a collision where there is none.

Tip!

This problem can be solved by “decomposing” the concave polygons in two or more

convex polygons, but for the sake of simplicity we’ll assume all polygons we are check-

ing for collisions are convex.

Now let’s check the more “technical explanation”.

9 COLLISION DETECTION AND REACTION 256



2D Game Development: From Zero To Hero

9.7.2 How it works

Let’s read the definition of the separating axis theorem again and break it down:

If two convex objects are not penetrating, there exists an axis for which the projection of the objects will not

overlap.

The first part defines the condition: in case two objects are not colliding, then what follows is true.

For what we were concerned so far, axes were “aligned to the screen boundaries”, but axes can actually have

different orientations and we can project shapes onto them.

The condition in our definition is represented as follows:

Figure 200: How the SAT algorithm works

As we can see, we have found an axis (which in this case is slanted) where the projection of the two shapes don’t

overlap. The presence of this axis where the projections don’t overlap is guaranteed by the fact that the two polygons

don’t collide.

Random Trivia!

We can now easily see why the “human explanation” is (for our own purposes) equiva-

lent to the “technical” one: we just need to take a single point inside the “gap” between

the two projections and strike a line perpendicular to our axis.

That’s our “separating axis”.

9.7.2.1 Finding the axes to analyze

Now we only have a problem: we definitely can’t spend an infinite amount of time trying all possible combinations

in the hope of finding an axis where the projections don’t overlap.

The fact is: we don’t need to try them all. Actually we need to try just a few, as many as the sides of the polygons

involved.

9 COLLISION DETECTION AND REACTION 257



2D Game Development: From Zero To Hero

The axes we need to check are actually the axes parallel to the “normal of the polygon’s edges”. In layman’s terms:

the axes we need to check are parallel to lines which are perpendicular to the edges of our polygons.

Let’s take it step by step, first we find the “normals”, which are just unit vectors perpendicular to the edges of our

polygons.

Figure 201: Finding the axes for the SAT (1/2)

Now we just have to strike axes parallel to those normals, and those are the axes we will need to check against.

Figure 202: Finding the axes for the SAT (2/2)

In the previous pictures, I chose axes around the two polygons, for the sake of clarity.

9 COLLISION DETECTION AND REACTION 258



2D Game Development: From Zero To Hero

Pitfall Warning!

Do not think that the axes we found are 5: there actually are 10. This is due to the fact

that the figures I chose (for the sake of cleanliness) are a rectangle and an hexagon,

which have edges that are parallel in groups of two.

9.7.2.2 Projecting the shapes into the axes and exiting the algorithm

Now, for each axis we found, we need to perform a projection of the two polygons onto such axis.

Figure 203: Projecting the polygons onto the axes

Now we consider each axis on its own and see if the projections overlap.

As soon as we find an axis where the two projections don’t touch (overlap), we know that the two polygons are not

colliding. Thus we exit the algorithm.

If all the axes we scan have overlapping projections, we can say that the polygons we’re analyzing are colliding.

In the example, we can find two axes that have non-overlapping projections, thus the worst case is that the algorithm

misses both of them 3 times in a row and exits at the fourth iteration.

Random Trivia!

If you use Axis-Aligned rectangles as your “polygons”, you will notice how the Separat-

ing Axis Theoremwill degenerate into something very similar to a simple AABB collision

detection.

The only difference is that we’re checking a condition where the rectangles don’t col-

lide.

9 COLLISION DETECTION AND REACTION 259



2D Game Development: From Zero To Hero

Due to its nature, this algorithm has higher efficiency when there are few collisions, since it exits as soon as we find

a separating axis (a gap in the projections).

9.7.2.3 From arbitrary axes to “x and y”

The only thing that remains is how to switch from an “arbitrary axis” to our usual “x and y” axes. Here projections

will help us again: we can simply project our projections.

y I

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x
Figure 204: Projecting our projections onto the x and y axes

If we look closely, we’re just projecting polygons onto a bunch of axes so that they get “flattened to lines”, then

we’re projecting such lines onto the x and y axes to see if there those lines are touching or not.

9.8 Ray Casting

Sometimes it can necessary to use unusual techniques to detect collisions: ray casting is one of them. If well used

(and with some “illusion magic”), ray casting can be a nice way to solve the “bullet through paper” problem.

9.8.1 What is Ray Casting?

Mostly used in 3D, ray casting is a technique where you cast an imaginary ray (usually of light) until it hits something,

but its uses can go beyond that.

Let’s take for example shooting a simple bullet: this can give some issues when the “bullet” is small and fast, as

explained earlier in The bullet through paper problem.

First of all, let’s put up some (arbitrary) constraints that will help us making the computation easier and better

performing without giving away our tricks too easily.

9 COLLISION DETECTION AND REACTION 260



2D Game Development: From Zero To Hero

Our bullet will shoot from the barrel of our gun (duh!), but we also define a point where the bullet will despawn:

this will limit our ray length and make our algorithm perform better. We can still give an excuse such as “bullets

are affected by gravity” (which actually is true), and maybe use it as a difficulty management technique (stopping

people from sniping the enemy can make the game harder and force the player to play the game the way we, the

developers, want).

Figure 205: How Ray Casting Works: Gun (1/2)

Attached to our gun, is an invisible line (our ray), that will follow every movement of the gun itself

Figure 206: How Ray Casting Works: Gun (2/2)

When we want to shoot the gun, instead of using the previously stated “time-stepping techniques”, we perform a

line-to-rectangle (or line-to-circle, or whatever we find best) collision detection, at the same time we play a really

fast animation of the bullet shooting along the cast ray. If the cast ray hits an enemy, they’ll die (or get destroyed).

Tip!

If you find that the bullet animation won’t align well with the enemy dying, the anima-

tion may not be fast enough. Some games even give up showing the bullet at all, and

instead show a white line for a split second, that fades away. The effect works really

well!

[This section is a work in progress and it will be completed as soon as possible]

9.8.2 Other uses for ray casting: Pseudo-3D environments

[This section is a work in progress and it will be completed as soon as possible]

9 COLLISION DETECTION AND REACTION 261



2D Game Development: From Zero To Hero

10 Scene Trees

Trees sprout up just about everywhere in computer science…

Donald Knuth

10.1 What is a scene

A scene usually represents a single screen in our game: it can be a menu or a single level. Many engines (like Godot)

make use of this kind of abstraction to “break down” a game into more manageable pieces.

The problem is that single scene can contain tens if not even hundreds of elements, thus efficient management is

necessary to avoid losing track of pieces of your game, as well as simplifying the drawing routines.

10.2 Scene trees and their functionalities

A scene tree is “yet another abstraction layer”: pieces of your level are arranged in a parent-child relationship, which

encourages composition-based approaches heavily, making the code more flexible and easier to maintain.

Figure 207: How a scene tree looks (specifically in Godot)

Each scene tree contains one or more “nodes” that represent a component of our level, like a sprite. These nodes

can be grouped “logically” but scene trees can bring a lot more to the table.

10.2.1 How scene trees can make drawing entities easier

Let’s imagine a game like the famous Galaxian: we have a ship that shoots aliens, and sometimes aliens can react

by “breaking formation” and attacking the player. Sometimes a single alien can break formation, sometimes it’s a

group of three.

10 SCENE TREES 262



2D Game Development: From Zero To Hero

Figure 208: Example of a ship attack formation

The situation here is more complex than it seems: this “troop” has a “captain” leading two other ships, who are

following at a fixed distance and angle: so if the captain moves, the “soldier ships” move, if the leader rotates, the

“soldier ships” will rotate accordingly.

Figure 209: What happens when the ship attack formation rotates

This can quickly get messy, since we’ll have to rotate the leader according to the screen, then rotate the “soldier

ships” according to the leader first, and then to the screen.

Scene trees can be used to make things easier, each node will rotate in relation to its parent.

10.3 Implementing a scene tree

[This section is a work in progress and it will be completed as soon as possible]

10 SCENE TREES 263



2D Game Development: From Zero To Hero

11 Cameras

Nothing’s beautiful from every point of view

Horace

The great majority of games don’t limit the size of their own maps to the screen size only, but instead they have

maps way bigger than the screen.

To be able to manage and display such maps to the screen, we need to talk about cameras (sometimes called

“viewports”): they will allow us to show only a portion of our world to the user, making our game much more

expansive and involving.

11.1 Screen Space vs. Game Space

Before starting with the most used type of cameras, we need to distinguish between what could be called “screen

space” and what is instead “game space” (sometimes called “map space”).

Figure 210: Reference Image for Screen Space and Game Space1

We talk about “game space” when the coordinates of a point we are talking about are referred to the top-left corner

of the entire game (or level) map.

Instead we talk about “screen space” when the coordinate of such point are referred to the top-left corner of the

screen.

Looking at our reference image, we can see how different the coordinates of the magenta dot are in screen space

and in map space.

It is possible to convert screen space to map space and vice-versa by accounting for the viewport offset (represented

by the red dot in the reference image), like follows:
1Jawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker

11 CAMERAS 264

https://adamatomic.itch.io/jawbreaker


2D Game Development: From Zero To Hero

screen coordinates = map coordinates− viewport coordinates

map coordinates = screen coordinates+ viewport coordinates

In a more friendly way, we can see our viewport as a “window” that moves around the map. Alternatively, we can

see it as a viewport that is still all the time but has the map scrolling under it.

11.2 Cameras and projections

Advanced Wizardry!

This subsection gives a general idea on how cameras work in a 3D engine, but it is

definitely useful to better understand how cameras work in general.

Cameras are just an approximation of of how we see things as humans. This approximation is due to a number of

tradeoffs made to make things seem realistic, but avoid the issues that reality brings with itself.

Let’s look at how a person sees, in a somewhat schematic way:

Figure 211: How a person sees things

A person can see anything directly in front of their eyes, to infinity (or at least until something blocks their vision,

like a mountain, a building or fog).

We’re definitely having a couple of problems: the first one is that we cannot represent infinity on a computer. If we

try to represent everything from the camera’s point of view to infinity, we won’t be able to play the game at all.

The second issue is very close objects: in real life an object that is right up to your face will cover your entire vision.

This may not be something that you want.

This is why computers render only things between two given planes, like the following:

11 CAMERAS 265



2D Game Development: From Zero To Hero

Close
Plane

Far
Plane

Rendered
Area

FOV

Figure 212: How videogame cameras see things

A videogame camera renders only what is situated between a “close plane” and a “far plane” (this means that

objects too close or too far from the camera will not be rendered). Moreover objects are projected onto the screen,

which may deform them if odd “Field of View” (FOV)[g] values are used.

11.3 Most used camera transitions and types

11.3.1 Static Camera

This is the simplest camera we can implement: each level has the size of the screen (or of the virtual resolution we

decided, see Virtual Resolution), and every time we go out of the map, the screen fades to black and back to the

new “room”.

[This section is a work in progress and it will be completed as soon as possible]

11.3.2 Grid Camera

This is an improvement on the static camera formula, each level (or room) has the size of the screen (or virtual

resolution we chose), every time we go out of the map, the screen scrolls into the new section. This camera is used

by the first Legend Of Zelda game for the Nintendo Entertainment System.

[This section is a work in progress and it will be completed as soon as possible]

11.3.3 Position-Tracking Camera

This camera is a bit more involved: the viewport tracks the position of the player and moves accordingly, so to

keep the character centered on the screen. There are two types of position tracking cameras that are used in video

games: horizontal-tracking and full-tracking cameras.

This type of camera can has some serious drawbacks when sudden and very quick changes of direction are involved:

since the camera tracks the player all the time, the camera can feel twitchy and over-reactive; this could cause

uneasiness or even nausea.

11.3.3.1 Horizontal-Tracking Camera

11 CAMERAS 266



2D Game Development: From Zero To Hero

Horizontal-tracking cameras keep the player in the center of the screen horizontally, while jumps don’t influence

the camera position. This is ideal for games that span horizontally, since we won’t have the camera moving when

jumping and temporarily hiding enemies we may fall on.

Figure 213: Example of an horizontally-tracking camera

This is the camera used in the classic Super Mario Bros. for the Nintendo Entertainment System.

[This section is a work in progress and it will be completed as soon as possible]

11.3.3.2 Full-Tracking Camera

Sometimes our levels don’t span only horizontally, so we need to track the player in both axes, keeping it in the

center of the screen at all times. This is good for platformers that don’t require extremely precise maneuvering,

since precise maneuvering could result in way too much movement from the camera.

Figure 214: Example of a full-tracking camera

[This section is a work in progress and it will be completed as soon as possible]

11.3.4 Camera Trap

The “Camera Trap” system was invented to eliminate, or at least mitigate, the issues given by the position tracking

camera. The playable character is encased in a “trap” that, when “escaped” makes the camera catch up in an effort

to put the player back in such “trap”.

11 CAMERAS 267



2D Game Development: From Zero To Hero

The trap is represented by an invisible rectangle which can be visualized on screen in case you need to debug your

camera.

Figure 215: Example of camera trap-based system

This allows the camera to be less twitchy, giving a more natural sensation. Furthermore you can size the camera

trap according to the type of game you are coding: slow-paced games can have a larger camera trap, allowing for

the camera to rest more on the same screen, while faster paced games can have a smaller camera trap for faster

reaction times.

[This section is a work in progress and it will be completed as soon as possible]

11.3.5 Look-Ahead Camera

This is a more complex camera that is implemented when the playable character moves towards a certain direction

very quickly. The Look-Ahead camera is used to show more space in front of the player, giving more time to react

to upcoming obstacles or enemies.

Figure 216: Example of look-ahead camera

This camera needs a good implementation when it comes to changing direction: having a sudden change of direction

in the player character should have a slow panning response from the camera towards the new direction, or the game

will feel nauseating.

So this camera is not ideal for games that require precision platforming, since the continuous “corrections” required

to hit a tight platform would move the camera around too much, giving the player nausea.

11 CAMERAS 268



2D Game Development: From Zero To Hero

[This section is a work in progress and it will be completed as soon as possible]

11.3.6 Hybrid Approaches

There are hybrid approaches to cameras too, mixing and matching different types of camera can give your game an

additional touch of uniqueness. For instance in “Legend of Zelda: A link to the past”, the camera is a mix between a

“camera trap” and a “grid camera”, where each zone is part of a grid, and inside each “grid cell” we have a tracking

system based on the “camera trap”.

This allows the game to have a more dynamic feel, but also saves memory, since the SNES had to load only one

“zone” at a time, instead of the whole map.

Another idea would be using an “out-of-center” camera trap that changes position according to how the player

“escapes the camera trap”, thus solving some of the biggest issues of the look-ahead camera.

Feel free to experiment and invent!

11.4 Clamping your camera position

Whichever type of camera you decide to make use of (besides the static and grid cameras), there may be a side

effect that could not be desirable: the camera tracking could follow the player so obediently that it ends up showing

off-map areas.

Figure 217: How the camera may end up showing off-map areas

Off-map areas may be shown as black in many cases, but in other cases (when the screen is not properly “cleared”)

the off-map area can show glitchy versions of the current map.

11 CAMERAS 269



2D Game Development: From Zero To Hero

In this case, it will be necessary to “clamp” the camera position, this way it will still follow the player, but won’t show

off-map areas.

This usually just involves a check on the viewport boundaries against the map boundaries, followed by a reset of the

coordinates to the map boundaries.

11 CAMERAS 270



2D Game Development: From Zero To Hero

12 Game Design Tips

There are three responses to a piece of design - yes, no, and WOW! Wow is

the one to aim for.

Milton Glaser

Game design is a huge topic, in this section we will just dip our toes into the argument, talking about some genres

and features in games, including some tips and tricks that can make the difference between a “good” and a “bad”

experience.

In this section we will also talk about level design tips, tricks and common pitfalls to avoid. We will talk about tutorials,

entertaining the player and ways to reward them better.

12.1 Tutorials

12.1.1 Do not pad tutorials

Tutorials are meant to introduce the player to the game’s mechanics, but a bad tutorial can ruin the experience.

Tutorials should be comprehensive but also compact, padding tutorials should absolutely not be a thing.

Gloss over the simpler things (usually the ones that are common to the genre) and focus more on the unique

mechanics of your game.

Avoid things like:

Use the “right arrow” button to move right, the “left arrow” button to move left, use “up arrow” to jump, use

“down arrow” to crouch

Instead use:

Use the arrows to move.

And eventually present the more complex mechanics in an “obstacle course” fashion.

12.1.2 Integrate tutorials in the lore

Tutorials are better when well-integrated in the lore, for instance if your game features a high-tech suit maybe you

should make a “training course” inside the structure where such suit was invented.

By integrating the tutorial into the game world, it will feel less of a tutorial for the player, but more like training for

the game’s protagonist.

12.1.3 Let the player explore the controls

Sometimes it’s better to allow the player to explore the controls, by giving them a safe area to try: this area is usually

a tutorial or a specific training area.

12 GAME DESIGN TIPS 271



2D Game Development: From Zero To Hero

It can prove more effective to avoid spoon-feeding your player with all the moves, and just let them explore the core

mechanics of the game by themselves, eventually assisted by an in-game manual of some sort.

So instead of doing something like (thinking about a 2D tournament fighter):

Do→↘↓ + A to do a chop attack
Do→↗↑ + A to do an uppercut
…

Try something like:

Do→↗↑ + A to do an uppercut
Try more combination with your arrows and the attack buttons for more moves

Check the move list in the pause menu

12.2 Consolidating and refreshing the game mechanics

12.2.1 Remind the player about the mechanics they learned

There’s a latin saying that goes “repetita juvant”, which means “repeating does good”.

A good idea is to sprinkle around different levels concepts that have been learned previously, so to remind and

consolidate them. This is more effective when done shortly after learning a new mechanic.

12.2.2 Introduce new ways to use old mechanics

After a while, old mechanics tend to become stale, to rejuvinate them we can apply such mechanics to new problems.

Changing their use slightly can make an old experience new again.

For instance, knowing that shooting our magic beam against something on the ceiling will make it drop (usually

killing an enemy), we can make the player use such envinronmental interactivity to drop a suspended weight to

open a door, or shoot a bell to “force” a change of guard so to sneak stealthily.

12.3 Rewarding the player

12.3.1 Reward the player for their “lateral thinking”

A good idea could be rewarding the player for not throwing themselves “head first” into the fight, but instead thinking

out of the box and avoid the fight altogether, or just win it differently.

Putting a very powerful enemy in front of some treasure (for instance currency used in-game) can seem unfair, unless

you place an unstable stalactite that can be shot with your magic beam.

Your magic beam won’t deal enough damage to the enemy to kill it before such enemy takes your life, but a stalactite

on their head will do the trick, and the reward for such lateral thinking will be a heap of coins (or gems, or whatever

currency you invented).

12 GAME DESIGN TIPS 272



2D Game Development: From Zero To Hero

Figure 218: Example of how to induce lateral thinking with environmental damage 2 3 4

Giving tips to the player by breaking the fourth wall can be another idea, a rock or a patch of dead grass conveniently

shaped like an arrow could point towards a secret room that has a fake wall.

Figure 219: Example of how to induce lateral thinking by “breaking the fourth wall” 5

This last tip should be done very subtly, so not to ruin the immersion. Unless your game takes advantage from these

kind of things (for instance games based on comedy).

12.3.2 Reward the player for their tenacity

After suggesting to reward players for not butting head-first into fights, now I’m going to suggest the exact opposite

(in a way): reward your players for their tenacity.

Beating a tough boss with a certain (weak) weapon, or just the plain tenacity and skill that is needed to undertake a

hard task, such feats should be rewarded: for instance with a powerful weapon that can be used after some level-ups.
232x32 Chests attribution: Bonsaiheldin (http://nora.la), hosted at opengameart
3Simple SVG ice platformer tiles, listed as “Public Domain (CC0)” at OpenGameArt.org
4Fossil (Undead) RPG Enemy Sprites attribution: Stephen Challener (Redshrike), hosted by OpenGameArt.org
5Jawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker

12 GAME DESIGN TIPS 273

http://nora.la
https://opengameart.org/content/treasure-chests-32x32
https://opengameart.org/content/simple-svg-ice-platformer-tiles-16x16-16x96-96x16
https://opengameart.org/content/fossil-undead-rpg-enemy-sprites
https://adamatomic.itch.io/jawbreaker


2D Game Development: From Zero To Hero

12.3.3 Reward the player for exploring

Exploration can lead the player to discover secrets, which can range from simple gear, to pieces of unexplored

environment, or even pieces of the game’s lore.

World exploration should not be limited to simple secrets, a nice idea could be finding a path towards something that

is usually considered “environmental damage” (like a catapult in the background) so that the player can deactivate

it.

Thinking out of the box can lead to some really interesting results when it comes to this tip.

12.3.4 Reward the player for not immediately following the given direction

This is an extension of the previous point, the player should be rewarded for their exploratory efforts, even more

when those efforts mean not immediately following the direction given by the designer.

“Thinking differently” should be rewarded with challenge and rewards up to said challenge. If the mission tells a

player to climb up a tower, themore curious players could be led to hit the tower’s underground dungeon before going

on with the mission. A nice challenge in such dungeon with a fittin reward could expand on the game experience.

12.3.5 Reward the player for not trusting you entirely

Sometimes it can be fun, for both the game designer and the player, to play a bit of a trick to the player themselves.

Some famous games, like DOOM and Dark Souls, use secrets-in-secrets to trick players into thinking they found

something valuable, while hiding something way more important. Let’s see the example below.

Figure 220: Example of secret-in-secret

12 GAME DESIGN TIPS 274



2D Game Development: From Zero To Hero

We can see how we hid a secret inside of another secret and used a piece of valuable (but not too valuable) treasure

to make the player think they found the secret, while the real secret is hiding behind another fake wall.

12.3.6 Reward Backtracking (but don’t make it mandatory!)

To make the game’s experience broader and richer, you may want to reward the player’s exploration efforts by hiding

treasure behind some backtracking.

For instance you can show the player a locked door somewhere in the level, such door will unlock and open after

beating a boss monster or a wave-based challenge in the next room and hide some weapons that would otherwise

be unlocked further into the game.

A nice idea would be “suggesting” to the player that something interesting happened, by playing the sound of the

door opening as soon as the event is triggered. Another idea would be showing the player that the door opened (for

instance if you’re in an open area, the player would be able to see clearly an open gate that was definitely closed

before).

The most important thing to remember is that all of this needs to be optional, a reward for the player’s willingness to

explore your levels further: avoid making backtracking mandatory, this will only feel like you’re “padding the game”

with nothing worth of note.

The player is paying you with their time and effort, it’s only right that you pay them back with a pleasurable experi-

ence.

Random Trivia!

A nice example of backtracking bonuses (although mandatory to 100% the game) is

used in the level “Sphynxinator” in Crash Bandicoot 3: Warped.

When you start the level, you can run backwards and you’ll find 4 crates (which are

necessary to get the “Gem” and 100% the game, but not mandatory for the normal

ending), one of which is an extra life.

The backtracking is really short and gives you a nice bonus.

12.3.7 The “lives” system

Extra ships, 1-ups, extends, continues: these are all instances of what we can call the “lives system”. This system

gives a more “arcade feel” to your game and adds an important challenge factor to it.

Without something that threatens a game over, beating the game is no longer a challenge, but it’s a matter of time.

When overcoming a challenge is inevitable, it is not a challenge anymore, and the player will end up losing interest.

This is what the “lives system” is for: it’s a “sword of Damocles”, hanging over the player’s head, continuously

threatening a “game over” and pushing the player to do their best in order to get as far into the game as possible.

“Continues” are just “a lives system for your lives”, they’re in a very limited number (or have a price, like putting

another quarter into the arcade cabinet) and allow you to “continue the game” with a new set of “lives” without

12 GAME DESIGN TIPS 275



2D Game Development: From Zero To Hero

losing your progress.

As with all things in video games, it doesn’t need to bring real challenge, but just the “illusion” of it.

Furthermore, lives and continues are a great tool to reward your player for their efforts: giving them an extra life

every 20.000 points, granting a continue for a no-hit boss battle, putting a bunch of 1-ups in a hard-to-reach place

are all great ways to challenge and reward your player and give your game more depth.

12.3.7.1 1-UPs

When a life system is in place, getting an extra life (a so-called 1-UP) is cause for celebration, since it allows the

player to get further into the game or play with new and bolder strategies or just feel more at ease.

There are many ways you can reward the player with an extra life, such as:

• Finding a secret;

• Reaching a certain score threshold (for example every 100.000 points);

• Finding a certain item (a “physical 1-UP”);

• Complete a certain combo-chain (for example kill over 8 enemies without touching the ground);

• …

No matter how the 1-UP is achieved, this should be celebrated with a jingle that is very recognizable: this will allow

the player to “know” that they got a 1-UP without thinking too hard about it. Not “celebrating” this event would

make it “ordinary” and uninteresting, while it’s extremely important in the grand scheme of things.

Some games even go as far as temporarily pause the game while the (short) jingle plays, that how important an

extra-life is: “Stop everything! We got a 1-UP here!”.

12.3.7.2 Other approaches

There are different approaches to a “lives system” that don’t necessarily involve lives. The main objective is creating

a mechanic that rewards the player for doing the right thing and punish them for doing the wrong thing (although

not too harshly, or the player will stop playing).

One such approach was used in the first System Shock (1994) game: the space station the game takes place in

is divided into floors. Each floor (with few exceptions) have a “cyborg conversion chamber”: if you die your body

will be brought to a conversion chamber in the floor you’re in and will become a cyborg, serving the enemy. Being

converted into a cyborg is the losing condition, and the punishment is being sent to the main menu and being forced

to load a save file.

Here’s the catch: the “cyborg conversion chambers” are fashioned out of “restoration bays”, that means that dis-

abling the cyborg conversion process will allow the player to be immediately resurrected at the nearest restoration

bay, although they won’t start at full health. This rewards the player for finding such restoration bays by giving them

essentially infinite lives.

[Do you know more about this? You can contribute, this book is open source!]

12 GAME DESIGN TIPS 276



2D Game Development: From Zero To Hero

12.4 Loading Screens

Loading screens can be subject to design too and deciding what to put in them can really enhance the player

experience with your product.

12.4.1 What to put in a loading screen

“What can we put in a loading screen?” The answer may sound obvious to some, but a simple loading screen has a

lot going on. Let’s think about it, the most barren loading screen imaginable has at least two elements:

• An animation, to make the loading screen less boring and to ensure the player that our game didn’t lock up;

• Some kind of progress indicator, to let the player know how far the loading routine has gone.

But we can put lots more into it, let’s take a

• Story: In story-heavy games, it may be a good idea to put a reminder, a briefing or just a couple sentences

telling what’s happening story-wise. This was done in DOOM (2016).

• World Building: If the story is not-so-linear, a good idea could be just telling some facts about the world of

the game, what some primary NPCs like, their habits, etc…

• Tips: Putting some tips to help the player is one of the most common things done with loading screens, these

tips should be short and useful (no “press F to kill your enemy silently”, that’s basic controls).

• Minigames: If your game may take a potentially long time to load, making the player play a simple mini-

game (maybe with rewards) while they wait. This was done on the Playstation 2 (and can be enabled on the

PC version) of Okami, where you can earn demon fangs with two minigames.

• Status-related sentences: This is something that can serve both as a “loading screen filler” as well as

“hidden debug feature”

– Actual loading information: Some players may like knowing what their PC is doing, so showing “load-

ing backgrounds” or “loading sound data” is a nice screen filler and can give your players a pointer in

case the game locks up while loading.

– Funny phrases: Instead of boring, actual loading information, you can put funny phrases like “inserting

buckazoids” (Space Quest, anyone?), if you have a list of funny phrases connected to actual loading

checkpoints, it will function as a small debug helper.

12.4.2 Letting the player “exit” the loading screen

In some cases it can be a good thing to have a loading screen fade into the next stage (or area) directly, while in

other situations it may be wiser to prompt the player to “exit” the loading screen themselves (maybe by a “Press

any key to continue” prompt).

The most important factor is whether the areas we will load into are safe: if the player is not ready, they may get

killed by enemies, and that feels unfair.

You should use a “press to continue prompt” when at least one of the following conditions applies:

• Any area we load to may be unsafe: We don’t want our players to take a small break, walk around the

12 GAME DESIGN TIPS 277



2D Game Development: From Zero To Hero

room and come back to a dead character;

• There is text on the loading screen: Be it a tip, world building or story, the player may be reading it, and

taking away the text will annoy them.

12.4.3 Avoiding a loading screen altogether

Dynamic loading is a technique that is usually implemented in 3D games, but nothing stops you from using it in your

2D game!

The main issue is avoiding the player noticing that you unloaded a piece of the map that you previously visited,

while loading the next piece. This means:

• Avoiding “popping”: the player won’t appreciate seeing pieces of the game appear or disappear in front of

their eyes;

• Avoiding slowdowns: the player will immediately realize something is going on if the game slows down or

drops frames at a certain point. Plus it will feel like the game is not well-optimized.

Popping can be avoided in many ways, the most common one can be summarized with “what’s outside the screen

doesn’t exist”: if more than a single room fits in your screen, what’s outside the screen space is a good candidate

for garbage collection.

An interesting idea could be making use of the player’s point of view to try and foresee which room the player will

head to next. With a clever use of doors and “cone of vision” you can unload rooms that are inside the screen space.

This can be done by “cutting” the player’s field of vision using doors and unloading a kind-of far-away room that

may be seen if the door was open.

Another way could be using so-called “points of no return”: rooms where you can’t go back, forcing the player to

continue on a certain almost-linear path. Be careful to not use too many of them, though! Players don’t really

appreciate seeing possibilities cut off from them.

Tip!

Elevators make good dynamic loading rooms: you’re changing floors, so it makes sense

to not being able to see anything outside and having an elevator animating while chang-

ing floors can “hide” that a loading operation is happening.

12.5 Designing the story and gameplay flow

When we are preparing the terrain for our game, it is vital to have an idea of how the story and the gameplay will

unfold. There are lots of different types of gameplay, here we present some of them.

12.5.1 Linear Gameplay

This is the simplest type of gameplay design: all story events come one after the other, without any possibility of

deviating from the flow.

12 GAME DESIGN TIPS 278



2D Game Development: From Zero To Hero

Figure 221: Example Scheme of linear gameplay

Very much like a presentation, there is no branching, but such linearity can present some advantages, like ease of

testing and possibility of applying traditional storytelling tools which have been developed for thousands of years.

Table 42: Summary of linear gameplay

Gameplay Flow Type Linear Gameplay

Advantages Simple and cheap to test, traditional storytelling tools can be used easily.

Disadvantages No replayability, the gameplay may not feel very “interactive”

12.5.2 Branching gameplay

Going towards more complex flow types, we can use branching to allow for more interactivity.

a

b

c

d

e

f

g

h

i

j

k

l

Figure 222: Example Scheme of branching gameplay

This type of gameplay flow allows for a lot of interactivity by crafting the game in a way that player decisions have

a direct influence on the story flow.

This gameplay flow is harder (and thus more costly) to test, but allows for multiple endings.

Gameplay Flow Type Branching Gameplay

12 GAME DESIGN TIPS 279



2D Game Development: From Zero To Hero

Advantages Simple to implement, allows for a strong feel of interactivity, allows for a

lot of replayability by giving gameplay paths.

Disadvantages Hard and costly to test, can get out of hand if not managed correctly.

12.5.3 Parallel gameplay

The Branching gameplay flow has a huge disadvantage: it can be really hard to manage and doesn’t really suit well

“more linear” games.

Here’s where parallel gameplay comes into play.

Figure 223: Example Scheme of parallel gameplay

In this flow style, there are branches running “parallel” to one another, but merge into “mandatory events” (which

are usually story related). This way we have varied gameplay while keeping the story essentially linear.

Gameplay Flow Type Parallel Gameplay

Advantages Moderately expensive to test, some traditional storytelling tools can be

used, story is easier to manage.

Disadvantages Replayability suffers from a story standpoint. If not well-made the player

will feel like the story is “on rails” from the get go.

12.5.4 Threaded gameplay

A different kind of gameplay is the “threaded” version, where there are many “beginnings”, “middles” and “endings”,

usually done by playing different characters.

Figure 224: Example Scheme of threaded gameplay

12 GAME DESIGN TIPS 280



2D Game Development: From Zero To Hero

This gives more replayability by giving many different and intertwining stories that allow to better understand a

“bigger picture” of some sort. This gameplay flow can be costly, since it requires testing all the possible paths and

crossings.

Gameplay Flow Type Threaded Gameplay

Advantages Good replayability, great for giving many “sides” to a story.

Disadvantages Testing all the paths can be costly, more difficult to manage.

Random Trivia!

This was done in Resident Evil 6, where different characters (and teams) have different

stories that overlap.

12.5.5 Episodic gameplay

A more “object-oriented” approach to storytelling can be done by making small “episodes” (like mini-stories) with

many entry and exit points.

Figure 225: Example Scheme of episodic gameplay

We need to be mindful of loops (we don’t want to replay an episode that was already completed) when laying out

our episodes. This gameplay flow allows for great interactivity, but kind of “forces” replaying the game to see all

the possible episodes.

Gameplay Flow Type Episodic Gameplay

Advantages Great interactivity.

Disadvantages Tends to “force” replaying the game to see all episodes and paths, hard

(and thus costly) to test and manage.

12.5.6 Adding parallel paths

Nothing forbids us to mix and match methods to create something that suits our game better.

A very much appreciated and used gameplay flow is having a linear story with lots of “side quests” to give some

diversion from normal gameplay, as well as replay value, since people are bound to miss some side quests.

12 GAME DESIGN TIPS 281



2D Game Development: From Zero To Hero

12.5.7 Looping Gameplay

This is a typical gameplay flow of roguelike games, where the player has to play the same game many times,

beginning to end, eventually advancing a “bigger story”.

Runs

Main game

End1A1 B1 C1

A2 B2 C2

A3 B3

End2A4 B4 C4

A B C D E F

Figure 226: Example Scheme of looping gameplay with a overarching story

The most important thing when laying out a looping kind of gameplay is that the world needs to change between

each “run”: either by adding new weapons/items/collectibles or by unlocking a new part of the story (new levels, for

instance) or adding new characters. Each run should feel like unique by itself.

Gameplay Flow Type Looping Gameplay

Advantages Great replayability.

Disadvantages Needs a lot of care in laying out how the runs evolve between one and the

next: if all the runs “feel the same” the player will abandon the game.

12.5.7.1 Soft-reset mechanics

Pretty often games adopting looping gameplay flow have one or more “soft-reset” mechanics. This mechanic consist

in starting the whole game from the beginning, while having some advantages that come from the previous runs.

A soft-reset run may see:

• Main character having a higher experience gain;

• Starting with a “box of tools”. For instance you start the new run with a weapon that had to be unlocked in

the previous run;

• Main character starting with a higher attack;

• …

This adds a new dimension to the gameplay: funnily enough, a player may progress through the entire game faster

by resetting it.

12 GAME DESIGN TIPS 282



2D Game Development: From Zero To Hero

This adds more decision making (thus more power) to the player, who can take the risk and “invest time” by soft-

resetting the game (where the investment is the time spent getting back to the point they were before) to have

higher gains in the long run.

Bonus points if you can add a reason for soft-resetting in the game’s story.

There is no real limit to the quantity of soft-resets you can stack on top of each other, although it’s advisable that

each soft-reset has a suitable “reward” and different “reset harshness”.

For instance you can have a soft-reset where you lose your weapons and levels, but have a 2% attack bonus. Then

you can have a second level of soft reset where you lose money, weapons, levels and something else in exchange

for 10% higher experience gain. Balance is the key.

12.6 Some game genres and their characteristics

12.6.1 Roguelikes and Rogue-lites

Roguelike games are usually games that involve dungeon-crawling and procedurally generated levels, usually with

a fantasy background. In this small section we will take a look at the features that characterize roguelike games.

The most accepted interpretation of a roguelike game is the “Berlin Interpretation”, which is based on the features

that follow. When games diverge from these features, but are still loosely based on the classic roguelike design,

they are usually called “rogue-lites” or “roguelike-likes”.

12.6.1.1 Use of pseudo-randomness and procedural generation

This is done to increase replayability: the dungeons (or levels alike) are generated procedurally, with a tinge of

randomness added to them. Joining procedural generation and pseudo-randomness is better than simple pseudo-

randomness, since the rules applied will make the level beatable without special equipment, as well as lead to more

aesthetically pleasing levels overall.

12.6.1.2 Permadeath

In the great majority of roguelike games, the death of a character is permanent. When a character dies, the player

will have to begin a new “run”: the levels will be generated anew and the available loot will change too.

Usually permadeath is joined with an erasure of the savefile connected to the “failed run”, this avoids so-called “save-

scumming”: a practice where players would load back their savefile repeatedly to achieve better results (which is

usually considered akin to cheating, in the roguelike field).

Another way to stop “save-scumming” is deleting the savefile when loading it, so when you save the only thing you

can do to keep your savefile is exiting the game.

Permadeath makes the “save game” functionality more of a “suspension of the gameplay” instead of giving the

player a recoverable state they can limitlessly return to.

12 GAME DESIGN TIPS 283



2D Game Development: From Zero To Hero

12.6.1.3 Turn-based Gameplay

Like tabletop games, the gameplay of roguelikes is usually turn-based: this allows the player to take as much time

as needed to take a decision.

12.6.1.4 Lack of mode-based gameplay

Roguelikes don’t have a real concept of “progression”: they allow you to do anything from the get-go, without

blocking any action just because you’re at a certain point in the game.

12.6.1.5 Multiple ways to accomplish (or fail!) a task

Roguelikes usually allow you to complete a task in many different ways, so many in fact that it seems the developers

thought of everything. Let’s take for example a locked door, a roguelike game would give you many options:

• Find the key or trigger to open such door;

• Lockpick it;

• Burn it down;

• Find a way around it;

• Kick it down;

• …

This also means that you have to be careful with your actions: if a weapon freezes entities when it touches their

flesh, you better have a pair of gloves handy (or you may end up frozen yourself!).

12.6.1.6 Resource Management is key

Resource Management in roguelike games is vital: usually they feature a hunger mechanic, as well as healing items,

weapons and various loot that the player must sort through to be able to survive. The player will be forced to leave

some loot on the floor of the dungeon, or choose between a known weapon and something unknown that may be

weaker or “cursed”.

12.6.1.7 Peace was never an option

Most roguelike games are based on hack and slash mechanics, where your main goal is killing monsters. In this

kind of games, “peaceful options” don’t exist (although they may exist, in a somewhat temporary fashion, to put

leverage on some stealth mechanics - like getting a better weapon to kill a powerful enemy by first sneaking around

them).

12.6.1.8 Dealing with the unknown

Roguelike games are heavily based on the concept of “unknown”: you need to explore an unknown place, finding

loot which powers are unknown and should be identified. Magical items change with every run, and give just vague

descriptions (like “a red potion”) which may heal in one run and kill you in another.

12 GAME DESIGN TIPS 284



2D Game Development: From Zero To Hero

Furthermore items can be subject to change, acquiring or losing traits due to environmental alterations or player

modification.

12.7 Tips and Tricks

12.7.1 General Purpose

These tips and tricks are good for any kind of game: from the simplest platformer to twin stick shooters, to strategy

games. These are good starting points to make your game feel more complete and fun to the player.

12.7.1.1 Make that last Health Point count

Players love that rush of adrenaline they get when they escape a difficult situation with just one health point. That

“just barely survived” situation can be “helped” by the game itself: some programmers decide to program the last

HP in a special way.

Some prefer giving the last health point a value that is higher than the other health points (kind of like a “hidden

health reserve”), others instead prefer giving a brief period of invincibility when that last “1HP” threshold is hit.

These small devices allow you to give players more of those “near death” experiences that can give players that

confidence boost to keep them playing through a hard stage, while at the same time, reducing the chance that they

will rage-quit.

Random Trivia!

This was implemented in both DOOM and Assassin’s creed, where the last portion of

health had more “hit points”.

In Bioshock when you take your last point of damage, you get about 1 or 2 seconds of

invulnerability.

12.7.1.2 Avoiding a decision can be a decision itself

An interesting way to make the characters from a game seem more real, is registering the “lack of response” or

“lack of action” in the game’s AI or dialogue tree.

This means that “ignoring” has consequences, and inaction is in and itself an action of “doing nothing” which should

be accounted for, just like ignoring someone in real life can have serious consequence or where someone may prefer

to do nothing instead of taking one of many bad decisions.

Random Trivia!

This trick is used in the game “Firewatch”, where not responding to a dialogue prompt

is a noted decision.

12 GAME DESIGN TIPS 285



2D Game Development: From Zero To Hero

12.7.1.3 Telegraphing

Players hate the feeling of injustice that pops out when a boss pulls out a surprise attack, that’s why in many games

where precise defense movement is required bosses give out signals on the nature of their attack.

This “telegraphing” technique, allows for that “impending danger” feel, while still giving the player the opportunity

to take action to counteract such attack.

Telegraphing is a nice way to suggest the player how to avoid screen-filling attacks (which would give the highest

amount of “impending danger”).

Figure 227: Example of a telegraphed screen-filling attack in a shooter

Another form of telegraphing is showing where the attacks will come from, using a “charging up animation”: this

will attract the player’s attention towards those spots and help them gauge the next attack.

Random Trivia!

A form of telegraphing was used in the Bioshock series: the first shots of an enemy

against you always miss, that is used to avoid “out of the blue” situation, which some-

how communicates both the presence and position of enemies.

12.7.1.4 Minigames

Many times underrated, minigames are a really vital part of a great game experience.

Minigames can be a fun diversion from the main game, extending the engagement time, as well as a priceless

resource for bigger open-ended games: you can use common “low-level” materials to feed into the minigame to get

better materials, weapons or prizes.

This is a win/win situation, you throw away unused materials to get useful tools, materials or cosmetics, also playing

into the mechanism that maybe some people will get things wrong and need the “low-level” materials again, further

lengthening the engagement of your game.

12 GAME DESIGN TIPS 286



2D Game Development: From Zero To Hero

12.7.1.5 When unlockables are involved, be balanced

When you’re creating a game that involves “unlockables” (for instance a roguelike where you unlock more items

for the upcoming runs), you should absolutely balance your unlockables in a way that compels the player to unlock

them.

If you hide a “negative item” behind an unlockable, the player will actively avoid doing the actions that lead to

unlocking such item. This is especially true now, in the age of widespread Wikis.

If you have to implement unlockables you should either:

• Make the unlocked item a “good item”: this will naturally compel the player to unlock such item to make

the subsequent runs easier and more fun and varied;

• Make the unlocked item a “neutral item” with situational good outcomes: the player will be less

attracted by these items, but the situational good outcomes (we can call them “interactions” or “synergies”)

can make the player willing to put in the effort to unlock such item;

• Unlock 2 items at once: a “good” one and a “bad” one: the player may be less attracted by this

“good+bad” combination, but may still be willing to go through with the unlock effort for the sake of the “good

item” and also for added variety in their next runs;

• Make the unlocked item a “bad item that can become good”: this way the player may be attracted

by trying to make a synergy using a “bad item” to cancel its bad effects while keeping the good ones. This

allows the player to get engaged in “making builds” for their character.

If you really want put a “good item” behind “a gate”, a good idea would make the “bad item” a pre-requisite for

unlocking a “very good item”. Alternatively, you can unlock the bad item “on the way” to unlocking a “good item”:

for instance you can make “beat the first boss 5 times” a requirement for the bad item to be unlocked, while “beat

the second boss 10 times” could be a requirement for the “good item” to be spawned.

Tip!

Remember: you should always account for wikis, some people think that wikis “ruin the

surprise” of the game, while others use wikis just out of curiosity, some again instead

use wikis as a “guide” to make the game easier or organize their strategy better.

12.7.2 Shooters

12.7.2.1 Make the bullets stand out

One of the most annoying things that can happen when you’re running-and-gunning your way through a level is

being hit by a not-so-visible bullet.

Your own bullets, as well as (and most importantly!) the enemies’ should stand out from the background and the

other sprites, so that the player can see and avoid them.

Some people may want to ask why your own bullets should stand out too, the answer is: so you can easily aim for

12 GAME DESIGN TIPS 287



2D Game Development: From Zero To Hero

your targets and distinguish your own bullets from the enemies’.

12.7.3 RPGs

12.7.3.1 Grinding and farming

When it comes to games part of the RPG genre, two words must be in your dictionary: grinding and farming, both

as a player and as a game developer.

Sometimes used as synonyms and similar in execution, these terms are actually different and have different objec-

tives. Let’s see how.

12.7.3.1.1 Grinding

Much like “grinding an axe”, grinding in RPGs entails cleaning areas from enemies repeatedly (either by re-playing

missions or just doing random encounters) with the objective of earning “experience points”, thus making yourself

stronger.

Grinding is somewhat a “self-leveling game design hinge”, allowing you to have some leeway when designing the

difficulty of your levels: if a player likes having an easier time, they will “grind themselves” to a higher level; if

instead they prefer a challenge, they will power through the “easier parts” until they find the challenge they seek

(due to being probably “underleveled”).

We can also use “designed grinding”, (as well as “level gates”, where you need to have a certain amount of experi-

ence to continue) to pace our game and eventually even lengthen the experience a bit.

Tip!

When designing your levels and “designing your grind”, you need to be mindful of your

target audience.

Some cultures are used to (and enjoy) a higher amount of grinding than others, so too

low of an amount may feel unsatisfactory to them, while an amount too high may be

frustrating.

You should also be very careful on “forcing grinding” on your players: players like having choice and really dislike

having anything forced on them, and this can change with your target audience.

Random Trivia!

Super Hydlide for the Sega Genesis/MegaDrive is one of the games that had its expe-

rience requirements tailored to the tastes of the market it was targeted to.

Considering the Japan release as the baseline, the US release sees its experience re-

quirements halved as well as the given experience doubled.

12.7.3.1.2 Farming

12 GAME DESIGN TIPS 288



2D Game Development: From Zero To Hero

Farming entails the same actions as grinding, but here we are using enemies as “farming animals”, the objective is

obtaining a certain amount of materials to obtain a weapon or item.

The most important aspect of “designing farming” is definitely reward the player for their farming: if a “special item”

requires a lot of materials (and thus a lot of farming), such item should be worth the effort, or the player will feel

cheated out of their time, effort and materials.

Note!

You should be mindful that some players will exploit some of your more complex me-

chanics to be able to farm for items and currency faster. This happened in the game

“The Witcher III”, where players used to kill cows and then meditate to make such cows

respawn.

Random Trivia!

In the game “The Witcher III”, precisely in patch 1.05, a mechanic to prevent such

exploitation was introduced. The “Bovine Defence Force Initiative” consisted of a

respawning moderately-leveled monster (called “Chort”) that attacks the player, thus

making the farming very dangerous for low level players.

On the flip side, higher level players could exploit this endlessly respawning monster

to gain Chort Hides, which are worth more currency than Cow Hides. This was patched

by making only one Chort spawn.

[Do you know more about this? You can contribute, this book is open source!]

12.7.3.2 Leveling Curves

When it comes to RPGs there are different ways to “design the leveling curve” in a game, depending on how you

prefer designing your game.

12.7.3.2.1 “Exponential” curve

One of themost known ways to shape your leveling curve is making each further “skill level” require more experience

points than the previous one, for example:

Table 48: An example of exponential level curve

Level Experience Points

1 5.000

2 10.000

3 20.000

4 40.000

… …

12 GAME DESIGN TIPS 289



2D Game Development: From Zero To Hero

This type of leveling curve entails that each newer (harder) enemy gives out a higher amount of experience (not

necessarily the quantity to make the experience feel “linear”).

The exponential nature of this level progression allows the “push” players towards harder enemies, since grinding

lower-tier enemies becomes less and less efficient the more your level increases.

12.7.3.2.2 “Level-based” experience rewards

As an addition or an alternative to the exponential curve, some games try to “push” the players more towards harder

enemies by scaling (down) their experience points with your level.

This method allows you to further shape the curve not only to try and prevent mindless grind of low-tier enemies,

but also by rewarding challenging harder enemies.

This method can be implemented in many ways, one of them could be assigning a level to the enemy itself and then

scale the experience rewarded by the difference between the player level and the enemy level.

Table 49: An example of “level-based” experience rewards

Player Level - Enemy Level Experience Reward

< -3 (very underleveled) 35.000

-2 (moderately underlevel) 20.000

-1 (slightly underlevel) 10.000

0 (ideal) 5.000

+1 (slightly overlevel) 2.500

+2 (moderately overlevel) 800

> +3 1

12.7.3.3 “Mastering”

An interesting mechanic to add in RPGs is “mastering”, as in “mastering the usage of a tool”, this mechanic entails

having set bonuses after a certain “mission” is completed with a certain tool.

Some examples could be:

• Kill 1000 enemies with a spear→ 20% more attack power using spears;

• Resist 2000hp of damage while wearing a heavy armor→ you can wear heavy armor without running speed

penalties;

• Kill 50 high-rank demons with a shotgun→ shotgun reloads twice as fast.

This can add a new level of depth in your game, as well as giving the player more choice over how they want to

shape their character: do they want to spend the effort to get a “mastering bonus” or is their time spent better

elsewhere?

12 GAME DESIGN TIPS 290



2D Game Development: From Zero To Hero

Random Trivia!

Tales of Berseria includes a very interesting “mastering” mechanic: once you master a

piece of equipment, its bonus “sticks” to the character and is kept even after the piece

of equipment is removed. This stimulates the player to try new equipment to “collect

bonuses”.

On the flip side, if you keep the same piece of equipment, such bonus is doubled. This

way the player can decide between a “double bonus” or “enlarging their bonus pool”.

12.8 Perceived Fairness

12.8.1 You don’t need precise collision detection

Here we go, spouting bold claims again. Here’s a bolder one: you don’t want precise collision detection. It’s slower,

harder to implement and most of all, the player may get annoyed at it.

In the heat of a gaming session, with all the action going on, the player may become a bit “blind” to small things:

this means that they will perceive as arbitrary anything that is not “evident”.

Let’s take this arrow vs “generic jumping man” example:

Figure 228: A pixel perfect detection would trigger in this case

With still images, things are obvious: that’s a collision, it’s on the tip of the character’s toe, but it’s a hit. It may be

1 or 2 pixels (it’s actually 3), but it is still a hit.

Now let’s imagine the image moving: the arrow darting from left to right while the character is ascending, it looks

like a near-hit, the player will appreciate the adrenaline rush of a near-death. If we go and declare that as a “hit”,

the player won’t understand why, they will say “that’s unfair, it just missed me”. Our collision detection was too

precise.

12 GAME DESIGN TIPS 291



2D Game Development: From Zero To Hero

Figure 229: A smaller hitbox may save the player some frustration

Sometimes we just need a hitbox that is small enough to avoid these “looks-like-a-miss” incidents: the instances

where the collision detection triggers are evident and the player will appreciate the sensation given by the near-

deaths.

Obviously you need to strike a balance, if the hitbox is so small that evident hits are counted as misses (with few

exceptions, like bullet hells) it will break the immersion.

12.8.2 Immediate dangers should be well visible

One of the biggest frustrations a player can encounter is definitely being damaged (or killed) by a hidden object.

To avoid these “unfair shots”, we should draw immediate dangers “late” in the drawing phase of the game loop, but

there is an issue: we don’t want to break the immersion.

Let’s take the following example: a bomb gets spawned just behind a chest by an enemy, and our character is

dangerously close to it.

Figure 230: A bomb spawned behind a chest, drawn in a realistic order

If the bomb is “behind” the chest, we can’t suddenly make it pop “in front of” the chest, that would definitely ruin

the immersion, also it may end up messing with the forced perspective that some 2D games use.

12 GAME DESIGN TIPS 292



2D Game Development: From Zero To Hero

Figure 231: Moving the bomb in front of the chest may ruin immersion

As you can see, even though the bomb has a shadow, it looks like the bomb and the shadow are “floating mid-air”,

thus ruining immersion.

Different games implement different solutions to the problem, some prefer highlighting the danger with an outline

drawn over everything, something like the following:

Figure 232: Highlighting the hidden part of a danger can be useful

Other instead prefer making the “foreground objects” semi-transparent, so that the player can see what lies behind.

Figure 233: Making objects transparent is a solution too

This solution is usually applied when the player themselves are behind the obstacle, giving a more “interactive” and

“less confusing” feel to the entire game.

12.9 Miscellaneous

This section denotes some various things that don’t really fit in “tips and tricks” but are still related to game design.

12 GAME DESIGN TIPS 293



2D Game Development: From Zero To Hero

12.9.1 You cannot use the “Red Cross” in games

Note!

What follows is not legal advice. I am not a lawyer.

If you want to know more (as in quantity and quality of information), contact your

favourite lawyer.

When you are developing a game, you will be tempted to use the famous “red cross” symbol on your health packs

or health-related items.

Don’t do that

The red cross symbol (a red cross over white background) is not in the public domain, but it’s actually a symbol

governed by the ICRC (International Committee of the Red Cross) and you may get in legal trouble for misusing it.

Halo and Doom changed their health packs symbol, from the red cross to a “red H” and a “pill” respectively.

The ICRC enforcement of this rule is inconsistent, but it would technically be a violation of the First Geneva Conven-

tion, chapter VII, articles 44 and 53.

Also states themselves (like Canada) tend to have rules of law regulating the use of the symbol in more detail.

12.9.2 Auto-saving

Some people may consider auto-saving a simple “quality of life improvement”, but it can also save the players a lot

of frustration in case your game crashes: trust me, no matter how good your programming is, your game will crash

(it may be a buggy graphics driver, an edge case that hits 0.0001% of the time or just bad luck).

If possible, you should provide the player with both an auto-save feature and a “manual save” one, this way the

player can save where they want but also have a back-up just in case.

To implement an auto-saving feature, we need a slot to auto-save into, so we can choose one of two ways:

• Choosing the save slot when starting a new game: this means that the auto-save feature will auto-save

and overwrite the selected save slot at every major event, which may be not desired. This is where the manual

saving feature comes handy: allowing the player to save manually will also allow them to create a backup

savefile.

• Dedicated “auto-save” slot: this leaves the manual saving feature intact, but also adds a “special saving

slot” the player can’t save onto. This slot is dedicated to the most recent auto-save (regardless of the save

slot we load from).

12.9.3 Feedback is important

It is extremely important to add feedback to actions, such as hits: a good visual feedback and the right sound can

make all the difference in the world for your game.

12 GAME DESIGN TIPS 294



2D Game Development: From Zero To Hero

The most common visual reaction to a hit is lighting up (by adding a white overlay) the sprite that got hit: this way

it is really evident that a hit happened.

The visual feedback should also mirror the effectiveness of the hit too. An explosive weapon should do tons more

damage than a single bullet: if this doesn’t happen the weapons will feel unbalanced and just badly designed.

12 GAME DESIGN TIPS 295



Part 4: Creating your assets



2D Game Development: From Zero To Hero

13 Creating your assets

Art is not what you see, but what you make others see.

Edgar Degas

13.1 Assumptions

This book (for now) assumes you already have some minimal knowledge of some matters, including but not limited

to:

• Bars (in music)

• Beats (in music)

• Basic music notation (either letter notation[g] or the modern music notation[g])

13.2 Graphics

13.2.1 Some computer graphics basics

Before we start doing anything, we need to know some basics about graphics. In this section we will introduce some

terms like “bit depth” (or “color depth”), “filtering”, “sprite sheets”, “virtual resolution” and others.

We will see a lot of stuff, from a bird-eye view of how graphics are stored in video memory to normal maps and more.

13.2.1.1 The “color wheel”

We can’t start talking about colors without mentioning primary and secondary colors, and have a “color wheel”

accompany the explanation.

Figure 234: The “color wheel” for screens

In art classes, you’ve probably learned that primary colors were Magenta, Yellow and Cyan. On screens it’s a bit

different (this is due to how light works, compared to paint): on screens we have Red, Green and Blue as primary

colors (thus making up the “RGB system”).

13 CREATING YOUR ASSETS 297



2D Game Development: From Zero To Hero

In fact if you looked really close on old CRT screens, you would have probably seen a lot of red-green-blue pixels that

together, seen from afar, would have made up the millions of colors that you’ve seen for a long time.

By mixing up the 3 primary colors, you would have obtained the secondary colors for light, which are… Magenta,

Yellow and Cyan!

Random Trivia!

This is due to how light and paint work differently. It is said that “lights are additive”

and “paints are subtractive”: if you mix Magenta, Yellow and Cyan paints using minus-

cule dots (like in printing), you will see that Red, Green and Blue are formed. This is

obviously an idealization, the colors you’d actually obtain by mixing paints by hand

would be closer to Orange, Purple and Dark Green. In short, this is how ink-jet printing

works (also a Black component is added, thus forming the CMYK model).

13.2.1.2 Color representations

In computers, there are two main representations for colors: the RGB and the HSV representations.

13.2.1.2.1 RGB Representation

We can memorize our colors by addressing their primary color components: Red, Green and Blue. This is usually

done with 3 pairs of bytes, one for each “color channel” (component).

R

G

B

Figure 235: An example of an RGB picker

This means that you can represent color with a 3-tuple: (RRR,GGG,BBB), where each channel can take a value

from 0 to 255 (or 00 to FF in hexadecimal, in that case the color is usually prepended by a # symbol) if we consider

the more commonly used “16 million colors” scheme.

• Pure red is represented with the 3-tuple (255, 0, 0) (or #FF0000 in hex)

• Pure green with (0, 255, 0) (or #00FF00)

• Pure blue with (0, 0, 255) (or #0000FF).

Black is the absence of any color component, which means it’s represented with the (0, 0, 0) 3-tuple (of #000000),

while White is represented with (255, 255, 255) (#FFFFFF).

13.2.1.2.2 RGBA Representation

Sometimes we need to represent transparency, in that case we need an extra pair of bytes to do so. In this case we

talk about the “RGBA system” (Red-Green-Blue-Alpha).

13 CREATING YOUR ASSETS 298



2D Game Development: From Zero To Hero

Colors are represented by a 4-tuple: (RRR,GGG,BBB,AAA), where each channel can take a value from 0 to

255 (or 00 to FF in hexadecimal).

13.2.1.2.3 HSV Representation

Another way to represent colors is using the HSV system (Hue, Saturation, Value). Sometimes this system is also

called HSB (Hue, Saturation, Brightness).

0°
Red

240°
Blue

120°
Green

Figure 236: A simplified “slice” of an HSV representation

Using the reference image above, the Hue is selected by choosing an angle on the circle: we find pure red at 0°,

then proceeding counterclockwise we have pure green at 120°, blue at 240° and then we go back to red at 360°

(which is back at 0°). This means that it’s represented as a value between 0 and 359.

Saturation can be chosen by getting farther or closer to the center, with the minimum saturation being in the

center and maximum at the outside. Saturation can be described as the “colorfulness of something compared to its

brightness”, which would mean that the color feels “less white-y” the higher the saturation. It is represented with a

number between 0 and 100.

Figure 237: More slices of the HSV representation show how value changes

Value (or brightness) is a bit different: the HSV representation is actually a cylinder (thus the use of “slice” in the

13 CREATING YOUR ASSETS 299



2D Game Development: From Zero To Hero

figure description): you can imagine a stack of slices that get darker and darker the closer we get to the bottom of

the cylinder. This too is represented with a number between 0 and 100.

Note!

Following this definition we can define pink as a “less saturated” red, as long as the

brightness stays high (something like (0, 50, 100)). If the brightness is low (towards

the lower half) we would obtain a dull brick red (for instance (0, 50, 50)).

13.2.1.3 Primary, Secondary and Tertiary colors

Primary colors are the basis of our color system and their definition is complex and outside the scope of this book.

Let’s just assume that they are the colors that we can mix together to “make other colors”.

On screens, the primary colors are Red, Green and Blue; while in classic painting green is usually substituted by

Yellow. If we wanted to be more precise, painting uses Magenta, Cyan and Yellow.

Secondary colors are made by mixing, in equal parts, two primary colors: this will give us more colors to work with.

Tertiary colors are obtained by mixing a secondary color with a primary color, in equal parts, thus obtaining even

more hues to play with.

13.2.1.4 Analogous Colors

Analogous colors are tertiary colors that are next to each other on the color wheel. For instance Red, Orange and

Vermilion (sometimes called Red Orange) are analogous colors.

They are good to create harmonious, almost-monochromatic compositions, since analogous colors are very common

in nature.

13.2.1.5 Complementary Colors

Contrasting (complementary) color pairs were used in impressionism for their “eye-catching” character, they are

created starting from the 3 primary colors (in screens: Red, Green, Blue), choosing one and combining the other two

in a “secondary color”.

Complementary colors are positioned on opposite sides of the color wheel. The color star (an alternative to the color

wheel to represent colors) makes this “opposition” very easy to see:

13 CREATING YOUR ASSETS 300



2D Game Development: From Zero To Hero

Figure 238: The color star shows how complementary colors are on opposite sides

Some complementary color for screens (color addition) pairs are:

• Red and Cyan: Choose red, then green+blue gives cyan;

• Green and Magenta: Choose green, then red+blue gives magenta;

• Blue and Yellow: Choose blue, then red+green gives yellow.

While, talking about colors made by paint (color subtraction) we have three following color pairs:

• Magenta and Green: Choose magenta, then yellow+cyan gives green;

• Yellow and Purple: Choose yellow, then magenta+cyan gives purple;

• Cyan and Orange: Choose cyan, then magenta+yellow gives you orange.

Complementary colors tend to attract the viewer’s eye in the points of intersection of their hues.

13.2.1.6 Color Depth

Raster graphics use bits to represent the color of each single pixel, the amount of bits used for each pixel is known

as color depth (or “bit depth”).

The color depth used for our images can influence the performance and look of our game: more bits means more

color choices, but also more memory occupied by those colors. Coupled with high resolutions, an image can easily

(if uncompressed) weigh MB worth of memory.

Let’s see the most common color depths used in history, first we start with a full-color reference image:

13 CREATING YOUR ASSETS 301



2D Game Development: From Zero To Hero

Figure 239: Reference image that we will for bit depth comparison

1-Bit color: Each pixel gets only 1 single bit, which means it’s either black or white. This was used mostly in

text-based systems, but some indie games manage to get great results out of just two colors.

Figure 240: Reference image, quickly converted to 1-bit color depth

2-Bit color: Each pixel can select from a palette of 4 colors (usually fixed). This was used by CGA cards on the IBM,

and usually the colors could be chosen from one of four available palettes: “white, black, light cyan, light magenta”

or “yellow, black, light red, light green”. The other two palettes are just a “low intensity variant” of the ones we’ve

just seen.

Figure 241: Reference image, converted to 2-bit color depth in CGA style

13 CREATING YOUR ASSETS 302



2D Game Development: From Zero To Hero

Random Trivia!

CGA was limited in the number of colors used, but due to a “defect” in the composite

NTSC output (called “composite artifact colors” or “cross-color artifacting”) these 4

colors could be used carefully to create completely new colors.

4-Bit color: Here we start seeing 16 colors, usually chosen from a selection of fixed palettes. This was used by EGA

cards on the IBM, as well as the Commodore 64 (along with “color cells”).

Figure 242: Reference image, converted to a 4-bit color depth in EGA style

8-Bit color: 256 colors chosen from a fully programmable palette (that’s some luxury right there!). Used on VGA

cards at low resolution.

Figure 243: Reference image, converted to an 8-bit color depth

The previous image looks a lot like the reference image, save for some artifacting. Since at higher color depths we

won’t see much difference, let’s just list the remaining ones:

• 16-Bit color: Sometimes called “High Color”, allows for up to 32768 colors with transparency, or up to 65536

without transparency.

• 24-Bit color: Sometimes called “True Color”, this is the most used color depth, allowing for over 16 million

colors. Each red-green-blue channel has 256 possible values.

• 30-Bit color: Sometimes called “Deep Color”, this format allows for 10 bits per channel and over 1 billion

colors on screen. Supported by many graphic cards and some high-end mobile phones.

13 CREATING YOUR ASSETS 303



2D Game Development: From Zero To Hero

• 48-Bit color: This format allows for hundreds of thousands of billions of colors (if you want to read the number,

it’s around 281474976710656). This is used by image editing software to avoid loss of data while working

with colors.

13.2.1.7 Direct Color vs. Indexed Color

There are two main ways to represent color in digital images.

The first is “Direct Color”, which usually allows 256 values (from 0 to 255 included) for each color channel (red, green

and blue), for a total of over 16 Million colors.

Each single color is identified by its value, which can be a waste of space and memory when the image has few

well-defined colors.

The second way to store images is with “indexed color”: in this case a “palette” of colors is created and each pixel

color refers to an index to such palette. This allows for smaller images, at the expense of the number of available

colors. If you want to add a new color to the picture, first you need to add it to your palette if there is space.

13.2.1.8 Lossless Formats

There are a few ways to store information on a computer, either you store them raw, or you use some tricks to make

such information occupy less space in your drive.

When it comes to storing information, lossless formats are usually uncompressed or make use of clever tricks to

compress your images without losing information in the process.

In computer graphics, lossless formats include:

• JPEG 2000 (in its lossless form);

• Portable Network Graphics (PNG);

• Free Lossless Image Format (FLIF);

• PDF (in its lossless form);

• TARGA Files (Truevision TGA, with TGA file format);

• TIFF (in its lossless form).

13.2.1.9 Lossy Formats

When it comes to compressing information, the best way to store the least amount of information possible is to

actually not store them. Lossy file formats get rid of some information present in the picture, in a more or less

evident way (depending on the compression ratio) to lower the file size.

In computer graphics, lossy file formats include:

• JPEG (in its most common “lossy” form).

13 CREATING YOUR ASSETS 304



2D Game Development: From Zero To Hero

13.2.1.10 Transparency

Usually you need to have transparency in your artwork, for instance for your sprites. There are different ways

to get transparency in your artwork, depending on the image format you’re using and the support offered by the

engine/framework you’re using.

13.2.1.10.1 Alpha Transparency

This is the most common type of transparency available today: along with the usual Red-Green-Blue (RGB) channels,

the image has an additional “Alpha” channel. Sometimes images with “Alpha Transparency” are also referred as

“RGBA” images.

This allows to set the transparency precisely and allows for “partial transparency” too, which means that we are able

to create shadows and semi-transparent surfaces.

The PNG format is one of the many image formats that supports alpha transparency.

13.2.1.10.2 Indexed Transparency

Normally used in GIF images, “Indexed Transparency” is the product of some limitation imposed in the format itself:

you can only choose from a limited palette of colours to paint your picture.

If you want to have transparency in your picture, you will need to sacrifice a color and tell the format that such color

is the “transparency color”. In many images a very bright, evident color (like magenta) is used. Such color will not

be painted, thus giving the transparency effect.

Figure 244: Indexed transparency takes a color and “marks it” as transparent

This also mean that we cannot make semi-transparent surfaces, since only that specific color will be fully transparent,

and that’s it.

13.2.1.11 Texture Filtering

Sometimes your images will need to be scaled or filtered to avoid annoying artifacts, in this small chapter we will

see some filters and how they look.

13.2.1.11.1 Nearest Neighbor Filtering

[This section is a work in progress and it will be completed as soon as possible]

13 CREATING YOUR ASSETS 305



2D Game Development: From Zero To Hero

13.2.1.11.2 Bilinear Filtering

[This section is a work in progress and it will be completed as soon as possible]

13.2.1.11.3 Trilinear Filtering

[This section is a work in progress and it will be completed as soon as possible]

13.2.2 General Tips

In this section we will take a look at some basic art tips that will give you some indication on how to create your own

art for your very own game. This will be pointers to keep you going.

13.2.2.1 Practice, Practice, Practice…

As with all forms of art, the secret to “getting good” is practice. There’s no way to avoid it, your first piece may been

nice or flat out terrible, your next one will be better, and the one after that will be even better… Hard work always

beats “talent” in the long run.

13.2.2.2 References are your friends

References are a tricky topic, some artists swear by it, others oppose them fiercely.

In my opinion, looking at a real-life version of what you want to draw can be one of the most useful things you can

do when drawing. Even when drawing something that involved a huge amount of fantasy, having a reference can

give you indications on shapes and sizes.

It doesn’t have to be a one-to-one reference either, you can get ideas for your dragon from crocodiles and lizards,

or even snakes!

13.2.2.3 Don’t compare your style to others’

One of the most frustrating things that can happen when learning something new, is comparing yourself to another

artist and saying “I should be able to draw like them”.

Everyone has their own unique style, and you should work on what makes it unique, instead of comparing your style

to others.

13.2.2.4 Study other styles

This ties a bit to the previous point, you should not compare to others, but you should also take some time to look

at other people’s work, find what you like about it and implement it into your own art style.

Looking around you can help you grow as an artist and aid you in the difficult seeking of your own art style.

13 CREATING YOUR ASSETS 306



2D Game Development: From Zero To Hero

13.2.2.5 Learn to deconstruct objects into shapes

Every complex object can be deconstructed into simpler shapes: circles, ellipses, triangles, rectangles, squares…

You can use such simple shapes, overlapping them to create a skeleton of your subject (living or not), so that you

can draw it in an easier way: with the layer system introduced by huge part of the current drawing applications, you

don’t have to do precision work when it comes to removing such skeleton.

13.2.3 Sprite sheets

Every time we create a sprite, we need some amount of memory to store its information, and to match the hardware

constraints most of the time a sprite’s image must be padded with unused pixels.

Figure 245: Example sprite that gets padded to match hardware constraints

Each sprite image that gets stored (and there could be potentially hundreds) wastes more and more memory, so we

need a way to store sprites more efficiently. In the previous example we can see how a 21x21 sprite gets padded

towards a 32x32 size, the sprite uses 52% more memory than it should!

Enter the humble Sprite Sheets.

We save our sprites (as well as animation frames) into a single drawing, called a “sprite sheet”. By composing a

sprite sheet with several smaller images of the same size, we just need to adapt our rendering to draw a portion

of such sprite sheet on our screen. The sprite sheet is the only thing that will need to be adapted to match our

hardware constraints, saving memory.

13 CREATING YOUR ASSETS 307



2D Game Development: From Zero To Hero

Figure 246: Example spritesheet that gets padded to match hardware constraints

In the previous example, the sprite sheet occupies only 1.5% more memory than it should. That’s a great improve-

ment.

This way, instead of having a lot of references to sprites to draw, each one wasting its own memory, we just need

the reference to the sprite sheet and a list of coordinates (rectangles, most probably) to draw.

Libraries like OpenGL support “sprite atlases” (or sprite batches), allowing for the graphics card to take care of

drawing (after preparing the batch) while the CPU can use more of its cycles to take care of input, movement and

collisions.

Sprite sheets are also used in 3D games, usually under the name of “texture atlases”: the objective of a texture

atlas is reducing I/O operations and context switching by leveraging the principle of locality.

13.2.3.1 Sprite Sheet Gotchas

There are some issues when working with sprite sheets that we need to look for. They are definitely not deal-breakers

but without care they may be the origin of hard-to-debug problems.

The first is texture compression: with some compression algorithms or certain compression factors, you may find

out that each “sprite” contained in a spritesheet may end up influencing all the other sprites.

Let’s take the following example:

Figure 247: Two platforms in a spritesheet

13 CREATING YOUR ASSETS 308



2D Game Development: From Zero To Hero

Now let’s compress the image heavily using JPEG and see what happens:

Figure 248: Two platforms in a spritesheet after heavy compression

As you can see, the compression artifacts bring some yellow onto the blue platform, which is not what we wanted.

The second issue can be thought as something similar to the first: when usingmipmapping (pre-calculates sequences

of images with progressively lower resolutions), usually in 3D games, the sprites may again influence each other.

13.2.4 Virtual Resolution

There are times where having the crispest graphics around is not a good idea, for instance in Pixel-Art games.

Times where it’s a better idea to keep your game low-resolution, be it for a matter of performance (your first games

won’t be extremely optimized and will be slow even at low map sizes and resolutions) or to keep your pixel-art crisp

and “pixelly”.

This clashes with the continuous push towards higher resolutions, which can mess up your game in a variety of ways,

like the following ones.

If the game is forced in windowed mode, you’ll have a problem like the following:

Figure 249: Windowed Game Example - A 640x480 game in a 1920x1080 Window

The game window is way too small and hard to see, and can get even smaller if the HUD[g] takes even more space

out of the window. This can be mitigated by calculating the position of each element in comparison to the window

size, this although can result in items too small (or too big if downscaling), like the following HUD example.

13 CREATING YOUR ASSETS 309



2D Game Development: From Zero To Hero

Figure 250: Fullscreen Game Example - Recalculating items positions according to the window size

This is where virtual resolution comes into play, the frame is rendered in a virtual surface which operates at a

“virtual resolution” and the whole frame is drawn and upscaled (or downscaled) to the screen, without having to

recalculate anything in real time (thus making the game faster and lighter).

Figure 251: Fullscreen Game Example - Virtual Resolution

The items get scaled accordingly and there is no real need to do heavy calculations. Virtual Resolution allows for

different kinds of upscaling, with or without filtering or interpolation, for instance:

• No filtering - Useful for keeping the “pixeliness” of your graphics, for instance in pixel-art-based games. It’s

fast.;

• Linear, Bilinear, Trilinear Filtering - Gives a more soft look, slower;

• Anisotropic Filtering - Used in modern 3D games, highest quality but also among the slowest, it is usually

used when rendering sloped surfaces (from the player’s point of view).

For more details, check the filtering section.

13.2.5 Using limited color palettes

[This section is a work in progress and it will be completed as soon as possible]

13.2.5.1 Dithering

Dithering (usually called “Color Quantization”) is a technique used to give the illusion of a higher “color depth” when

you’re using a limited palette of colors.

The usage of dithering introduces patterns into the image when the pixels are visible, if instead the pixels are small

enough the pattern will look like a new color, without actually introducing a new color into the palette.

13 CREATING YOUR ASSETS 310



2D Game Development: From Zero To Hero

Using two different levels of blue, we can use a dithering pattern to obtain a new tone of blue, like the following:

Figure 252: Dithering example

It’s possible to study how your palette reacts to dithering using a dithering table, this will give you an idea of the

colors available via dithering.

You can see a simple example of a dithering table here:

Figure 253: Dithering Table Example

You can see the palette colors on the top row and the left column, then you can see how dithering (in this case a

simple checkerboard pattern) allows for different colors to pop out.

There are different dithering patterns, that allow for different type of colors, intensity and patterns:

13 CREATING YOUR ASSETS 311



2D Game Development: From Zero To Hero

Figure 254: Some more dithering examples

13.2.5.2 Palette Swapping

Palette swapping is a technique mostly used in older video games, where an already-existing graphic (like a player

character’s sprite) is reused with a different palette (combination of colors).

This palette swap makes the new graphic quite recognizably distinct from the original graphic. This technique was

normally used to tell apart first and second player.

Random Trivia!

A prime example of this is the video game that (re)started it all: Super Mario Bros. Mario

and Luigi are exactly the same sprite, but Luigi uses a different palette.

Some other video games use palette swapping to indicate their status (like using a green or purple-based palette

to indicate the “poisoned” status), or indicate a difference in their statistics (like a red-based palette to indicate an

enhanced attack statistic), in other occasions different palettes are used to distinguish stronger versions of the same

enemy.

Other franchises, like Pokémon, use palette swaps to introduce “special versions” of some entity (in the case of

Pokémon, a shiny Pokemon).

Palette Swapping can be used in more creative ways, though. Going back to Super Mario Bros. you can see that the

clouds and the bushes in the levels are exactly the same graphic, just with a different palette. Same goes for the

underground bricks and the overworld bricks: they just have a different color.

13.2.6 Layering and graphics

There are some things that should be kept in mind when drawing layers for your game, here we talk about some key

points about layering and graphics.

13.2.6.1 Detail attracts attention

When it comes to games, it’s easy to get too excited and craft your work with the highest amount of detail possible,

but there is a problem: detail tends to attract players’ attention.

If you put too much detail in the background, you’re going to distract them from the main gameplay that happens

in the foreground, which can prove dangerous: the graphics can get messy and you can even get to the point of not

13 CREATING YOUR ASSETS 312



2D Game Development: From Zero To Hero

being able to distinguish platforms from the background.

So a golden rule could be:

Use high detail in the foreground, gameplay-heavy elements - use less detail in the backgrounds

A good idea to make the background a bit less detailed is using blurring, which allows to keep the overall aesthetic

but makes it look “less interesting” than what’s in the foreground.

This doesn’t mean the background should be devoid of detail, just don’t overdo it.

13.2.6.2 Use saturation to separate layers further

Bright colors attract attention as much as detail does, so a good idea is making each background layer more “muted”

(color-wise) than the ones in foreground.

The main technique to make backgrounds more muted is lowering saturation, blending the colors with grey: this will

make the background less distracting to the player.

So another rule can be written as:

Layers farther away should have lower color saturation than the layers closer to the camera

13.2.6.3 Movement is yet another distraction

As detail and saturation are due to attract attention from the player, movement is another one of those “eye-catchers”

that can make the gameplay more chaotic and difficult for the player.

Small amounts of movement are OK, but fully-fledged animations in the background will prove distracting.

Let’s take note of rule number 3 then:

Try to avoid movement in the background

13.2.6.4 Use contrast to your advantage

Complementary colors tend to attract a lot of attention in the points of intersection of their hues.

If backgrounds feature complementary colors, it may distract the player from the main gameplay.

13 CREATING YOUR ASSETS 313



2D Game Development: From Zero To Hero

Figure 255: Which spaceship is easier to spot at a glance?

Our rule number four should then be:

Keep backgrounds low-contrast to avoid distracting players

Also the opposite rule may apply:

Keep the main gameplay elements contrasting, so to attract the attention towards them

An orange-robed character will be easier to follow on a blue-ish background, for instance.

13.2.6.5 Find exceptions

Nothing is ever set in stone, and no rules should keep you from playing a bit outside the box and fiddling with some

exceptions to a couple rules.

13.2.6.6 Summarizing Layering

Let’s take the following image:

13 CREATING YOUR ASSETS 314



2D Game Development: From Zero To Hero

Figure 256: How contrast and detail can help distinguishing foreground and background 6

You can notice that the grass in the foreground has a lot more hues of gold and brown, the trees and the grass are

darker and more saturated compared to the background, which is more “muted”.

If we were to break down the image into its main layers, from furthest to nearest, we would obtain something like

this:

Figure 257: Breaking down the image allows us to see the differences between the layers 7

From left to right we have:

• the background: our sky box, there is very little detail here, just enough to blend the color bands together

to make a cohesive piece;

• the farthest layer: the trees have very few hues in their bark and leaves, little detail is added, just enough

to make out lights and shadows;

• light rays: this semi-transparent layer is extremely simple, but being so light and monochromatic it adds

variety to make the image interesting without distracting from the foreground too much;
6Image by Roe61 (https://linktr.ee/Roe61) used with explicit permission
7Image by Roe61 (https://linktr.ee/Roe61) used with explicit permission

13 CREATING YOUR ASSETS 315

https://linktr.ee/Roe61
https://linktr.ee/Roe61


2D Game Development: From Zero To Hero

• the foreground: this layer features the highest amount of detail, the most evident is the grass (but if you

look closely, you may notice some texture in the tree bark too), as well as the most saturated and darkest

colors in the picture. The contrast with the other layers makes the foreground “pop up”.

To summarize, we can make a handy diagram that will give us a “rule of thumb” when drawing layers for our game:

Farther Closer

Saturation

More

More

Less

Less

Brightness

Detail

Animation

Darker

Higher

Lighter

Lower

Figure 258: A diagram to show how each section affects our perception of a layer

In short, the closer an object is:

• the more saturated its colors;

• the darker it looks;

• the more detail it has;

• the more it is animated;

13.2.7 Pixel Art

[This section is a work in progress and it will be completed as soon as possible]

13.2.7.1 What pixel art is and what it is not

[This section is a work in progress and it will be completed as soon as possible]

13.2.7.2 Tools

When it comes to pixel art, your most used tools will be:

• Pencil: Its hard borders are ideal for base colors and outlines, allowing per-pixel editing without worrying

about blur radius;

• Brush: The brush tool’s soft borders are great for shading, in case you want to go for a more “hi-res” look;

• Paint Bucket: This is great for filling outlined ares with a base color. This allows also to create “zones” that

help you distinguish between different parts of a sprite;

• Eraser: Great tool for removing stray pixels! Just make sure the eraser is set to delete the whole pixel and

not just “make it more transparent looking”.

Opacity options for tools are great for shading: you can take the same color and blend it with other existing colors,

or make it stronger by going through the same area more than once. This makes the process more akin to real

painting.

13 CREATING YOUR ASSETS 316



2D Game Development: From Zero To Hero

13.2.7.3 Layers

As with all other drawing styles, layers are your best friends in pixel art too. Just make sure to start with a transpar-

ent layer, since some drawing programs (for memory and CPU efficiency) won’t let you easily add a “transparent

background layer” afterwards.

Layers allow you to work on something new without affecting what’s already “ready”, as well as separate parts of a

character (arms, legs, torso and head, for instance).

You can always “flatten the image” (merge all the layers into one) later.

13.2.7.4 Sub-pixel animation with palette cycling

When drawing pixel-art, artists may face what looks to be an insurmountable issue: pixels are a discrete measure

which cannot be divided further.

This means that subtle movements may end up really difficult to represent: a character may look like it’s laughing

or shrugging, while it’s only meant to breathe calmly (for instance in an idle animation).

This is where sub-pixel animation comes into play: the basic idea is to play with the colors inside what you’re drawing

in a way that simulates movement, but the overall shape of the subject doesn’t change (or is delayed in such a way

that the change of shape looks smoother).

This technique is called “palette cycling”: by alternating two shades of the same colors in rapid succession, you are

able to simulate animations that give the illusion of being “smaller than a single pixel”.

[This section is a work in progress and it will be completed as soon as possible]

13.2.8 Normal Mapping

If you want your 2D game to look amazing, you can’t escape shaders. One of the ways to use shaders is calculating

light, but since we’re in a 2D environment, we don’t have “normal vectors” to use to calculate how the light interacts

with our 2D objects.

Enter normal maps: these are sprites that “map” their color channels to the direction of the “normal vector”: this

means that communicate direction with color. Awesome, isn’t it?

Random Trivia!

If you’re curious, normal maps usually have this color to direction mapping:

• x (which can go from -1 to +1) is mapped to the red channel (which can go from

0 to 255)

• y (which can go from -1 to +1) is mapped to the green channel (which can go

from 0 to 255)

• z (which can go from 0 to -1) is mapped to the blue channel (which can go from

128 to 255)

13 CREATING YOUR ASSETS 317



2D Game Development: From Zero To Hero

This is an example of a texture, along with a possible normal map:

Figure 259: A texture (on the left), with a possible normal map (on the right)

There are many ways to get a normal map: you can try to get a program to generate one for you, make the object

in a 3D modeler and extract the normal map from there, or just draw it by hand.

If you choose the last option some tools, like Aseprite, have a “normal mapping” mode that shows you this special

color picker:

Figure 260: Aseprite’s normal mapping color picker (both in its normal and discrete versions)

Just imagine this color picker like a “3D sphere” and pick the color of the face of the “3d surface” you’re trying to

draw.

Pitfall Warning!

Be careful with your shaders, some may expect one or more of your channels to be

“flipped”.

13.2.8.1 A simple example

Let’s take a simple box, with no shading, like the one below:

13 CREATING YOUR ASSETS 318



2D Game Development: From Zero To Hero

Figure 261: A box that will be used to show how normal maps influence light

Now we’ll shine a light on the box, without any normal map: this will happen twice:

In the first example (left) the light will be a round gradient that will come from the top right corner of the image,

while in the second example the light will be a bit stronger and coming from the top left corner. This is the result.

Figure 262: How the lack of normal mapping makes lighting look artificial

Now we’ll draw the simplest normal map possible: just filling the 3 faces of the box that we can see with the (kind of)

corresponding colors from our “3d sphere” (the normal mapping color picker), we can see the result is very different

Figure 263: How normal mapping changes lighting

Now let’s make something a bit more detailed, by highlighting the faces of the cross-braces on the sides of the box,

the way they’re lit it’s again different:

Figure 264: A more detailed normal map results in better lighting

13 CREATING YOUR ASSETS 319



2D Game Development: From Zero To Hero

You can get as detailed as you want, but remember that it may have some performance impact if you go overboard

with many sprites.

13.2.9 Tips and Tricks

This section contains various tips and tricks used by artists to create certain effects inside video games, demonstrat-

ing how sometimes something really simple can have a great effect on the game experience.

13.2.9.1 Tiles

13.2.9.1.1 Getting started

When you are starting to make a new tileset, it’s a good idea to begin with a base sized 5x5 tiles or more (so if your

single tile is 32x32 pixels, the image will be at least 160x160 pixels): this can give you variations on the tileset that

won’t make the “tiling” (repetitions) so easy to catch when the map is made.

Figure 265: Example of tile “alternatives”

If you think something does not fit in a tileset, try to think what the surrounding area would look like: darker grass

could be overgrown, a darker spot in the water could signify deeper water, shadows and light help too.

When it comes to “corner tiles”, using the same tile, rotated in 90 degree steps is a great basis to build upon, after

that you can edit the tiles accordingly.

This “rotation trick” can be used for most of the tiles you create, let’s take for instance the following diagram,

representing some tiles:

Figure 266: Tile “Rotation Trick” (1/3)

We can take the tiles and rotate them, to get something like the following:

13 CREATING YOUR ASSETS 320



2D Game Development: From Zero To Hero

Figure 267: Tile “Rotation Trick” (2/3)

If we continue with copying, rotating and pasting, we can obtain a great basis for our tileset:

Figure 268: Tile “Rotation Trick” (3/3)

After that we can edit and make it so tiles are seamless, while putting the minimum amount of necessary effort to

create something convincing.

13.2.9.1.2 Creating “Inside rooms” tilesets

13 CREATING YOUR ASSETS 321



2D Game Development: From Zero To Hero

In many cases, when dealing with tile-based games, we need to create a tileset that is good to represent “inside”

environments, like a basement, a cave or the inside of a building. A simple way to reach that goal is creating a set

of black and transparent tiles that can be overlaid on another tileset, like the following:

Figure 269: Example of black and transparent tileset used in “inside rooms”

Such tiles can then be overlaid onto something like the following:

Figure 270: Example of incomplete “inside room”

And we obtain the following result:

Figure 271: Example of “inside room” with the black/transparent overlay

As you can see, something as simple as some shadow can really sell the effect of being “inside a dark place”.

13.2.9.2 Sprites and icons

13 CREATING YOUR ASSETS 322



2D Game Development: From Zero To Hero

13.2.9.2.1 Shape first

When you’re making some kind of sprite or icon, you should always get the basic shape of the object down first, then

you can give the object more depth and detail with colors. This will help you understanding the space occupied by

your object.

Figure 272: How color can completely change an object

It’s a puppy! It’s a jester! It’s a… hastily drawn flower vase?

This is the power of color, you can change the entire nature of an object by changing how it’s colored, but having

the basic shape of the object down first will help you a long way.

13.3 Sounds And Music

The best gameplay and graphics mean nothing if they are not accompanied by good audio. Audio can make or

break a game, as does music: some games have really memorable soundtracks even if their graphics may not be

“top-notch”.

In this section you will find the basics, tips and tricks to make your own music and sound effects.

13.3.1 Some audio basics

Before creating sounds and music, we need to clarify some terminology, as well as learn some basics before diving

into FM synthesis like wave forms. After that we can learn about trackers and Software DAWs.

In this section we will learn about sample rate, bit depth, lossy/lossless formats and clipping, among other things.

13.3.1.1 Sample Rate

Differently from Analog Audio, which is continuous (as in has an infinite amount of detail), Digital Audio is a stream

of numbers (ones and zeros) that is “discrete” in nature. That means that we blast these numbers thousands of

times a second to be able to build a decent sounding sound.

The number of times we record such numbers from our digital microphone (as well as the number of times we blast

such numbers back from our speakers) is called sample rate and it is measured in Hz.

The more the samples per second, the more detail we can squeeze into our audio files, but at the same time the

bigger the file will become too.

13 CREATING YOUR ASSETS 323



2D Game Development: From Zero To Hero

Figure 273: Graphical Representation of Sample Rate (44.1KHz)

In normal CD-Audio, we have a sample rate of 44100 Hz, which means that we recorded a sample 44100 times in a

single second.

When making our game’s audio, we should always stay around such value, since going lower would make the audio

sound worse, since we lower the amount of information the audio itself has.

Figure 274: Graphical Representation of Sample Rate (8KHz)

Also we should avoid using weird sample rates, here are some the most commonly used:

• 44.1kHz (or 44100 Hz if you prefer), used in the CD Audio format;

• 48kHz, used in Pro Audio contexts;

While working with audio (mixing and editing), we can go higher:

• 88.2kHz - Double the CD Audio standard, used to record and recreate more frequencies;

• 96kHz used in some serious Professional audio contexts.

13.3.1.2 Bit Depth

Along with sample rate, there is another value in audio that expresses its quality: the bit depth.

The bit depth defines how many “volume values” we can have in a single sample, which shapes the quality of the

sound in a different way than sample rate.

If our audio has a 1-bit bit depth, each sample will have only 2 values:

13 CREATING YOUR ASSETS 324



2D Game Development: From Zero To Hero

• 0: Mute

• 1: Blast at full volume

Which strongly reduces the quality of the audio.

Random Trivia!

In Pokèmon Yellow for GameBoy, Pikachu’s voice was encoded with in 1-bit depth.

If we had a 2-bit depth, we could make each sample have more volume values:

• 00: Mute

• 01: 33% volume

• 10: 66% volume

• 11: 100% volume

Usually audio has a 16 Bit depth, but more modern systems make use of 24 Bits or even 32 Bits.

13.3.1.3 Lossless Formats

As with graphics, there are audio formats that allow you to store uncompressed information, as well as compressed

(but without losses) sounds. The most common lossless audio formats include:

• WAV (uncompressed);

• AIFF (usually uncompressed, but AIFF-C supports both lossless and lossy compression);

• FLAC (lossless compression).

13.3.1.4 Lossy Formats

As with graphics, there are also “lossy formats” that allow us to store information in even less space by getting rid

of information that is considered outside our hearing spectrum, for instance. Some of the most known are:

• Mpeg Layer 3 (MP3);

• OGG Vorbis;

• Windows Media Audio (WMA);

• Advanced Audio Codec (AAC).

13.3.1.5 Clipping

Clipping is a phenomenon when you’re trying to output (or record) a wave that exceeds the capacity of your equip-

ment. As a result, the wave is “clipped” (cut) and there is a very audible distortion.

You surely heard clipping in audio before, usually when people scream on a low-quality microphone and the audio

gets distorted.

13 CREATING YOUR ASSETS 325



2D Game Development: From Zero To Hero

Figure 275: Example of audio clipping

The best way to repair clipping is to re-record the audio completely, although some tools can help in case you

absolutely cannot re-record the audio.

Also you should be wary of clipping, because there may be cases where it damages your audio equipment.

13.3.2 Sound Synthesis

Now we’re entering technical territory. We’re going to talk about sound synthesis: the art of creating sounds, also

called “sound synthesis”.

13.3.2.1 AM Synthesis

The first, and technically simplest way to generate sound is via AM (amplitude modulation) synthesis.

With this technique you take the wave form created by an oscillator[g] andmodulate its amplitude (volume) according

to a second wave form.

13 CREATING YOUR ASSETS 326



2D Game Development: From Zero To Hero

Figure 276: Example of AM Synthesis

In this example we see a 440Hz sine wave (in the middle) having its amplitude (quite heavily) modulated by a 110Hz

sine wave (on top): the resulting wave form on the bottom has a “tremolo effect” to it.

13.3.2.2 FM Synthesis

With this technique you take the wave form created by an oscillator[g] (called “carrier frequency”) but instead of mod-

ulating its amplitude, you modulate its frequency (pitch) according to another wave (called “modulator frequency”).

Figure 277: Example of FM Synthesis

In this example (for sake of visibility) we have a 110Hz sine wave (in the middle) having its frequency (again, heavily)

modulated by a 22Hz sine wave (on top): we can see the result in the bottom of the figure.

This frequency modulation happens so fast that we end up with something that sounds completely different from

the original wave form.

13.3.2.3 FM Synthesis vs Sample-based music

FM synthesis was invented to circumvent one of the biggest issues that plagued the 8 and 16-bit era: lack of space.

13 CREATING YOUR ASSETS 327



2D Game Development: From Zero To Hero

Games were saved on small cartridges (which ranged, on average, from 4Kb on the Vic20 to 2MB on the Gene-

sis/MegaDrive), such cartridges had to contain graphics, music and the entire code of the game.

Back then there were no compressed music files, not that it would have helped much, so instead of memorizing the

song itself, the instructions to play the song would be saved.

Let’s make a simple example: we need to make a very simplistic soundtrack, composed of a pure sine wave that

represents the “A above middle C” (or A4) for an indefinite amount of time. We could either save all the samples

(and thus waste precious cartridge space), or we could just save the following “code”:

Listing 69: How FM music may be saved on an old console

1 stop all channels;

2 select the sinewave waveform on channel 1;

3 set the frequency of channel 1 at 440Hz;

4 start channel 1;

All music made via FM synthesis is nothing more than a bunch of instructions for the FM chip on how to work.

The next step forward was on the Commodore Amiga, where the first sample-based music started: we save small

pieces of PCM audio (called samples), rework them a bit using ADSR envelope and pitch-shifting and call them

“instruments”. Such instruments are then used to compose the track.

The music heard from these systems is fruit of a “hybrid approach”: small pieces of (sometimes recorded) audio

actually exist in the track, and they’re re-used, pitch shifted and reworked all around the track. This makes for very

small files (around 10 to 100Kb) with a lot of flexibility.

Modern music is essentially made up of a huge, monolithic sample, usually in the form of an MP3 file or something

equivalent, recorded from real-life instruments or synthesized, but instead of “saving the instructions” like in the old

days, we just save the entire track as a PCM sample.

13.3.3 Basic Wave Forms

It is important to know how the main wave forms look and sound in order to understand how to create your own

instruments, as well as having a further insight on how older 8-bit games sounded.

It is suggested to look for each sine wave on the internet and hear how it sounds, here we will briefly talk about the

main waveforms, their shape and uses.

13.3.3.1 Sine Wave

A sine wave has an amplitude that follows a trigonometric sine wave, it sounds really “pure” and is usually used at

440Hz to tune instruments in A.

13 CREATING YOUR ASSETS 328



2D Game Development: From Zero To Hero

Figure 278: How a sine wave looks

In games it is usually used to give out the impression of a flute-like instrument.

13.3.3.2 Square Wave

A square wave looks… square-like. It is one of the most used waves in 8-bit music, sounds a bit rougher than a sine

wave and is used for beeps and blips.

Figure 279: How a square wave looks

In game music it is normally used as lead instrument, and with various modulations, it can sound like a xylophone

or a piano, or at least a very artificial rendition of those.

The NES had 2 voices (or channels) dedicated to square waves.

13.3.3.3 Triangle Wave

A triangle wave is another very used wave in 8-bit music, given it’s very “muted” characteristics it can be used to

give songs a “bass track” of some sort.

Figure 280: How a triangle wave looks

The NES had one channel completely dedicated to triangle waveforms.

13.3.3.4 Sawtooth Wave

13 CREATING YOUR ASSETS 329



2D Game Development: From Zero To Hero

Sawtooth waves were a staple of the Commodore64 era, with its “gritty”, “bzzt” sound which can sound a lot like a

trombone on long notes.

Figure 281: How a sawtooth wave looks

13.3.3.5 Noise

Noise is not a real, static waveform, but more like what comes out when the amplitude has a random value on each

sample.

Figure 282: How a noise wave looks

Noise can be used (with the right modulation and processing) to simulate percussions.

The NES had one channel completely dedicated to noise waveforms.

13.3.4 ADSR Envelope

Now that we’ve seen how waveforms look like, we need to understand how such sounds change over time. The

sound envelope is used to describe exactly that.

Themost commonway to control the signal envelope is through four parameters: Attack, Decay, Sustain and Release.

Thus the name “ADSR envelope”.

Key
Pressed

Key
Released

Attack Decay Sustain Release

Figure 283: Representation of an ADSR Envelope

13 CREATING YOUR ASSETS 330



2D Game Development: From Zero To Hero

13.3.4.1 Attack

The attack is the measure of time the sound takes from zero to its initial peak, when the key is pressed.

Key
Pressed

Key
Released

Attack Decay Sustain Release

Figure 284: Attack on ADSR Envelope

The longer the attack, the slower the sound will “rise” when a key is pressed.

13.3.4.2 Decay

After the attack, comes the decay, which is the measure of time it takes the sound to drop to “sustain level” after

the initial peak.

Key
Pressed

Key
Released

Attack Decay Sustain Release

Figure 285: Decay on ADSR Envelope

The longer the decay, the slower the sound will drop to sustain level.

13.3.4.3 Sustain

After the decay is completed, we are now sustaining the signal. Sustain is not ameasure of time, but it is a measure

of volume.

13 CREATING YOUR ASSETS 331



2D Game Development: From Zero To Hero

Key
Pressed

Key
Released

Attack Decay Sustain Release

Figure 286: Sustain on ADSR Envelope

The higher the sustain level, the louder the signal will be when at “sustain level”. This signal will last until we release

the key.

13.3.4.4 Release

After we release the key, the sound will have to fade out somehow. Release is the measure of time it takes the sound

to go from sustain level back to zero.

Key
Pressed

Key
Released

Attack Decay Sustain Release

Figure 287: Release on ADSR Envelope

The higher the release time, the longer the sound will take to “fade out”.

13.3.5 Digital Sound Processing (DSP)

Let’s think about a simple situation: we want to play a “walk” sound effect: every time our character’s foot hits the

ground, we play a “step” sound effect.

If we play the same sound over and over, it will become boring really quickly, breaking the immersion. An idea could

be saving different sounds for a footstep and then every time the player takes a step, a random footstep sound will

be played.

This solves the problem, at a cost: we need to use more memory to keep track of such sounds, multiply that for

tens of sound effects and the game may run out of memory on low-end systems (or we can “run out” of patience in

creating tens of variants of sound effects).

13 CREATING YOUR ASSETS 332



2D Game Development: From Zero To Hero

An alternative solution could be using DSP: editing the sound sample in real time to add more variety and depth

while saving memory, the trade-off would be CPU time, but it’s an acceptable deal.

13.3.5.1 Reverb

When you take a stroll on a sidewalk, you have a certain “openness” on the footstep sounds you hear, but that surely

changes if you’re walking with hard shoes on a hard floor inside of a small cave. You can hear a lot of reverb and

echo at every single step.

Reverb is the first of the sound effects that we encounter in our journey: it allows to give more depth to our sound

effects, making it sound like we’re inside of a small cave or a very large room.

13.3.5.2 Pitch Shift

A way to give more variety to a sound effect without much work is using pitch shift to make our sound a bit higher or

lower, randomly, so that each step is slightly different from the other: this way our ears will get less tired of hearing

said sound effect.

Pitch shifting must be used with caution, since abusing it will distort the sound effect and break the immersion in

our game.

Another example of pitch shift is used in racing games, where the car roar is pitch-shifted up or down according to

the acceleration given to the car.

13.3.5.3 Filtering

Another sound effect we can use is filtering, which are divided in 3 main sections, according to the frequency they

“allow to pass through”:

• Low Pass Filter: This filter allows low frequencies to pass through unfiltered, while the frequencies higher

than a defined threshold will be cut. This allows for effects where the bass is unaltered but higher frequencies

are cut away;

• High Pass Filter: Opposite of the previous filter, this filter allows high frequencies to pass through unaltered

while the frequencies lower than a defined threshold will be cut;

• Band Pass Filter: A combination of the two previous filters, this filter let’s through all the frequencies be-

tween two defined threshold values. This allows for more interesting effects like a music sounding through an

old radio.

An interesting example is when an explosion happens near the player, in that case the “stun” effect is given by

using a low pass filter on an explosion sound (which makes it sound really low and muffled), eventually a slowdown

is applied and a secondary sound effect of a very high pitch sound is added (something similar to what you hear

when your ears are ringing).

13.3.5.4 Doppler Effect

13 CREATING YOUR ASSETS 333



2D Game Development: From Zero To Hero

To give more depth to your sound effects, you can use pitch shift to create the “Doppler Effect” that we hear in real

life when a police car passes by: when the car approaches us the pitch is higher, when the car is in front of us we

hear the siren as it should be, and when the car passes us we hear a lower pitched version of the siren sound effect.

The Doppler effect can be really useful when applied to car racing games again, when we overtake one of our

opponents (or one of our opponents overtakes us) using the Doppler effect can help the player feel more “immersed”

in the experience.

The Doppler effect would actually apply to light too, but we would need to have something travelling at a really high

speed or said object to be really far away (like a planet).

13.3.6 Simulating older consoles’ audio

Sometimes we want to give our players a sensation of nostalgia, or we just want to limit ourselves to get the most

out of our creativity (creativity comes from limitations), so we may decide to emulate the audio of a famous console

(or at least remember of it in some way).

It’s not sufficient to “make it sound” the same way (same pitch, same general sound) but we also need to adhere at

the limitations of the consoles. Usually such limitations are in the number of channels (which means the number of

notes that can played at once by all instruments), but sometimes it’s more structural.

Note!

These is just a simplified version of the limitations of each console. Also if you want you

can freely break any of the “rules” and make something original that has the “taste”

of something “classic”.

Let’s take a look at some of the most famous.

13.3.6.1 Commodore Vic20

The Commodore Vic20 is one of the first famous home computers; its audio comes from the VIC chip, the same chip

that takes care of the video output.

The VIC chip has 3 channels dedicated only to square/pulse waves, with a range of 3 octaves where each octave is

a single octave apart from the others (So its octave structure would be something like 1st - 3rd - 5th).

The VIC chip also features a noise channel, for a total of 4 voices. Remember that these voices are shared between

music and sound effects.

13.3.6.2 Commodore 64

Probably the most famous home computer of the 8-bit era and had an amazing sound chip for the time: the timeless

SID chip, which was used for audio output and controlling paddles/joysticks.

13 CREATING YOUR ASSETS 334



2D Game Development: From Zero To Hero

The SID chip (in its two main iterations: the MOS 6581 and the 8580) has 3 channels, each one can be programmed

to use one of four wave forms:

• Square/pulse wave

• Triangle

• Sawtooth

• Noise

also the SID chip features ADSR controls for each channel, giving even more control and possibilities.

Random Trivia!

The MOS 6581 (the first SID Chip model) had a flaw in its volume register that was very

special: if you could change the value of the $D418 register fast enough, you could

play audio samples with a 4-bit resolution, effectively giving the C64 a 4th channel for

playing PCM samples!

This issue was fixed in the later MOS 8580 revision, but it can be “added back” by

adding a resistor on the board.

But one thing that makes the SID chip very special is the ability to reprogram (and thus change) the instruments on

the fly. This real-time programming capability makes it possible to give the “illusion of more instruments”

Figure 288: A freeze frame of a C64 song, you can see the instruments changing

Note!

You can hear the difference between a somewhat “simple song” like “Monty on the

run” and something more complex, like the “R-Type” title theme (check the oscillo-

scopes). To see how “volume samples” worked, check the oscilloscopes of “Hot Rod”

and “Netherworld” (both title themes).

13.3.6.3 Commodore Amiga

13 CREATING YOUR ASSETS 335



2D Game Development: From Zero To Hero

This is another famous home computer, although some could argue that it was being produced during the fall of

Commodore, it is still the cradle of sample-based music and music trackers.

The Commodore Amiga’s sound chip, name Paula, had a 4-channel PCM sample-based sound system, where each

sample has an 8-bit resolution. Nothing stops people from just mixing more samples together and give the illusion

of more channels.

Another limitation of the Paula chip is that 2 channels are strictly dedicated to the “left” stereo channel, while the

other 2 are for the “right” stereo channel.

13.3.6.4 Sega Master System / GameGear

The Sega Master System is a quite famous 8-bit console, which had moderate success, and has a lot in common

(hardware-wise) with the portable Sega GameGear and those similarities extend to the sound chip too.

The sound chip used is an equivalent of the Texas Instruments SN76489 (also known as PSG) which features 3

channels dedicated to square/pulse waves + a noise channel.

Random Trivia!

To be precise, the ancestor of the Master System, the SEGA SG-1000, used a real TI-

SN76489, while the Master System uses a “clone” integrated into its VDP (Video Display

Processor). Also the Japanese version of the Master system had an FM synthesizer chip

too! To be precise it was the Yamaha YM2413, which gave a sound similar to the newer

Sega Genesis/MegaDrive. Sadly such chip was removed for the international release.

13.3.6.5 Sega Genesis/MegaDrive

Probably Sega’s most famous console: the Genesis/MegaDrive is a bit of a weird beast when it comes to sound.

You’ll see why.

Mainly the console uses a Yamaha YM2612 chip for sound, which offers 6 programmable FM channels + 1 DAC (digital

to analog converter) that can play small samples. The sound chip is technically stereo, but the feature is underused

due to the fact that, in the original console, stereo sound could be heard only through the headphone jack.

In addition, mostly for Master System compatibility, the console features a TI-SN76489 chip equivalent (integrated

into its VDP), adding 3 square wave channels and a noise channel.

Random Trivia!

To underline how important the sound was in this console, just think that sound had its

own dedicated fully-fledged CPU! It was a Zylog Z80, the same used as main CPU in

the Sinclair ZX Spectrum.

13.3.6.6 NES

13 CREATING YOUR ASSETS 336



2D Game Development: From Zero To Hero

Probably the most famous console in the world, the NES had a limited but interesting toolkit for its sound.

The base console had 5 channels, distributed as follows:

• 2 channels dedicated to square waves;

• 1 channel only for triangle waves;

• 1 noise channel;

• 1 channel dedicated to playing small digital sound samples (used normally for drums).

But what’s most interesting is that such capabilities could be extended by cartridge hardware, the most famous is

probably the Konami VRC6, which added 2more square wave channels, as well as a sawtooth one, used in Castlevania

III.

Random Trivia!

Just to underline how extensible this system was, the Konami VRC7 contained a sound

chip that provided a 6-channel FM synthesizer. Sadly its extended audio capabilities

were used in a single, japan-exclusive game.

13.3.6.7 SNES

The SNES is a huge step forward in time for audio on Nintendo systems, featuring 8 channels that make use of 8-bit

samples.

The S-SMP Chip also features a variety of filters and effects, so you have pretty much full freedom except for the

number of channels.

13.3.6.8 Game Boy

The Game Boy is definitely not a step forward in audio technology, due to the lower amount of channels and less

available waveforms. Yet, this console has a distinctive sound and some amazing tracks (just listen to any song from

Bionic Commando, for instance).

In this console you have:

• 2 square wave generators;

• 1 noise generator;

• 1 PCM 4-bit wave sample, this allows the programmer to create their own wave forms, for instance;

• 1 audio input from the cartridge although this has never been used commercially

All the square wave and the noise generator feature envelopes (ADSR), while the first square wave generator also

features a frequency sweeping functionality (allowing for slides between notes).

The Game Boy has a lot of obscure audio behaviour, but following the limitations above should give you enough of

an idea to make something that sounds like it.

13 CREATING YOUR ASSETS 337



2D Game Development: From Zero To Hero

13.3.6.9 AdLib / SoundBlaster

The AdLib and SoundBlaster cards are based on the Yamaha YM3812 chip, which features 9 channels that use a

digital oscillator. Given the high number of channels and the freedom given by them, it’s pretty easy to get a result

that sounds like old DOS game as soon as you get the tone down.

13.3.7 “Swappable” sound effects

Back to our walking example, an idea to increase the variety of sound effects at our disposal would be keeping a list

of “swappable sounds”: sounds that are still part of the class we’re considering, but are radically different.

For instance we could have different walking sounds for different floors, so that walking on grass and walking on a

stone pavement will be different. In this case it would be useful to make the sounds configurable and give the sound

manager the chance to inspect what type of floor we’re walking on.

An example of “swappable sound effects” configuration is given in the following file, which is written in YAML:

Listing 70: Example of swappable sound effects

1 footsteps:

2 grass:

3 - grasswalk1.wav

4 - grasswalk2.wav

5 stone:

6 - stonewalk1.wav

7 - stonewalk2.wav

8 metal:

9 - metalstep1.wav

10 - metalstep2.wav

Making a configuration file instead of hard-coding the elements allows for easy extensibility and modding, which

everyone loves (See Designing entities as data).

13.3.8 Some audio processing tips

Sometimes you may find yourself being a bit confused about what to do with your audio samples and music, so

here’s a small list of tips to make your life that tiny bit easier when it comes to processing audio.

13.3.8.1 Prefer cutting over boosting

Sometimes we may find our audio samples lacking that “punch” they would need, the first idea we may have would

be to use a “bass boost” filter to make the low frequencies more prominent. Most of the time, this is not a good idea,

since boost filters can create artifacts.

It’s better to cut the higher frequencies instead, and eventually boost the entire volume of the sample during mixing.

This way the nature of the sample doesn’t get tainted by boosting, and we obtain the result we wanted.

[Do you know more about this? You can contribute, this book is open source!]

13 CREATING YOUR ASSETS 338



2D Game Development: From Zero To Hero

13.3.9 DAW Basics

13.3.9.1 What is a DAW Software?

Digital Audio Workstation Software (DAW Software) are pieces of software that have extensive recording, playback

and editing features, allowing you to create your own songs, given some instrument samples (or pre-recorded tracks).

They also feature mixing facilities, waveform display and track controls, some even feature (the software equivalent

of) effect racks, such as equalizers, to further the possibilities of creating your work in the best way possible.

13.3.9.2 The Piano Roll

Have you ever seen one of those pianos that seem to have an integrated music box? That is a so-called “piano roll”

and is used to store music and play it back on the piano.

Most Software DAW have a similar abstraction, called “piano roll” too.

Figure 289: Example of a piano roll in LMMS

In the previous image, we can see four notes, each defined by its vertical position (respectively a C5, C6, A5, F#5) and

length (respectively a single whole/semibreve and three half/minim notes). In the previous example each vertical

green bar represents 1
4 and each light green bar represents a beat. This should help you imagining how to compose

something.

Different systems have different piano roll variations. For instance:

Figure 290: Example of a piano roll in FamiStudio

This Software DAW has a different shape for the notes, meaning a certain kind of effect is applied to them. All the

basic principles still apply, though.

13 CREATING YOUR ASSETS 339



2D Game Development: From Zero To Hero

The piano roll abstraction allows you to edit your music easily, by grabbing notes and moving them, or making them

longer by dragging their edges.

13.3.10 Music Tracker Basics

13.3.10.1 What is a Music Tracker Software?

Born with the 4-voice sampling system in the Commodore Amiga, Music Trackers are essentially a type of music

sequencer. The great majority of music trackers have the majority of their screen occupied by the tracker version

of a music sheet.

Figure 291: A screen from MilkyTracker

Differently from how the great majority Software DAW work, notes are positioned in channels at certain points of a

timeline that spans vertically.

Usually each channel contains 64 rows (16 beats), but it can be changed to the composer’s preference.

Figure 292: Simple overview of a tracker

13 CREATING YOUR ASSETS 340



2D Game Development: From Zero To Hero

Each row of a channel contains instructions for the tracker to execute, in the form of notes, instruments and com-

mands (or effects).

Figure 293: How each tracker channel is divided

Notes are written in the usual “Letter Notation” that you see in many music environments, while instruments are

enumerated, then there are commands: commands can instruct the tracker to apply a temporary effect on the note,

like portamento or vibrato.

In the previous example, there is a “vibrato” command going on, starting with the 48C: 4 is the “vibrato command”,

8 is the vibrato speed and C (hex for “12”) is the vibrato depth.

The vibrato continues with a V0 E41 command pair, where V0 changes the vibrato depth to 0 (the speed is the same

defined in the previous command), while E41 is a “vibrato control command” (E4) which changes the waveform of the

vibrato to 1 which is “ramp down”.

The next command does more or less the same thing, besides changing the vibrato waveform to “square”.

The E40 command resets the vibrato waveform to the default “sine wave”.

[This section is a work in progress and it will be completed as soon as possible]

13.3.10.2 Samples

Samples are the basis of a music tracker: they are essentially wave forms which can be sped up or slowed down

to create different notes. Without any sample, you wouldn’t have any instrument, which in turn would mean you’d

have no sound at all.

Usually samples come in the form of small digital sound files, most trackers allow the sample to be looped (wholly

or in part) to simulate a “sustain” effect.

[This section is a work in progress and it will be completed as soon as possible]

13.3.10.3 Instruments

13 CREATING YOUR ASSETS 341



2D Game Development: From Zero To Hero

An instrument is a set of a sound sample, with some effects applied by default (if you want). Essentially an instrument

is a “container” for a sample and some parameters to allow the change of pitch and effects.

[This section is a work in progress and it will be completed as soon as possible]

13.3.10.4 Channels

A “channel” (also called a “voice”), is a space where one sample is played back at a time. One channel is not “fixed”

to a certain instrument and modern music trackers can mix an unlimited number of channels. Many times music

makers limit themselves to a certain number of channels to achieve a “retro feeling” or to challenge themselves.

[This section is a work in progress and it will be completed as soon as possible]

13.3.10.5 Patterns

A pattern is essentially a piece of a song: a group of tracks with their own instruments, settings and notes written

in them. The “pattern” abstraction allows you to easily repeat pieces of a song by just referring to the pattern.

[This section is a work in progress and it will be completed as soon as possible]

13.3.11 Basic Rhythms

When composing music, we may not know where to start: this is the objective of this section: give you some easy

rhythms to start with. Here I will use LMMS’s beat+bassline editor to represent the notes, as it’s the easiest to

understand.

Remember to check your tempo too, since it may make the difference between something akin to the “house” genre

and something more “techno”.

13.3.11.1 Four on the floor

This is the most basic rhythm there is: let’s consider a situation where we have 16 beats per bar (so each note is

1/16th):

Figure 294: A single bar in our basic rhythm

The four on the floor rhythm uses a kick drum in the 1st, 5th, 9th and 13th beat, giving a constant rhythm.

Figure 295: A basic four on the floor rhythm

This is practically the basic of all dance-based music.

13 CREATING YOUR ASSETS 342



2D Game Development: From Zero To Hero

13.3.11.2 Four on the floor with off-beat hi-hats

A basic rhythm like the “four on the floor”, by itself, can prove to be quite boring. To spice it up, we can add some

closed hi-hats in the off-beats, like the following:

Figure 296: Four on the floor with off-beat hi-hats

If you listen closely, a lot of music has this basic pattern mixed into it, in one way or another.

13.3.11.3 A simple rock beat

By using hi-hats, a kick drum and a snare drum, you can create a very simple rock beat. Keep 4 beats in a bar, each

beat put a hi-hat, on 1 and 2 put a kick drum and on 3 a snare drum.

Figure 297: A simple rock beat

[Do you know more about this? You can contribute, this book is open source!]

13.3.12 Adaptive Music

Adaptive Music (sometimes called “dynamic music” or “interactive music”) is a background music track that reacts

to the events of the game. Such reactions can involve volume, rhythm, tune, adding new instruments (adding drums,

for instance).

Random Trivia!

A simple example of Adaptive Music can be found in Super Mario World, where hopping

on Yoshi will add or change the drum beats on the level’s music track.

[This section is a work in progress and it will be completed as soon as possible]

13.4 Fonts

13.4.1 Font Categories

Before starting with fonts and the ways they can be integrated in your game, we should start with some definitions

and categorizing fonts by their own characteristics.

13 CREATING YOUR ASSETS 343



2D Game Development: From Zero To Hero

13.4.1.1 Serif and Sans-Serif fonts

In typography, serifs are small strokes that get attached to larger strokes in a letter (or symbol) of certain fonts. The

font families that make use of serifs are called serif fonts or serif typefaces.

Serif fonts look more elegant and give a “roman” feeling (in fact, serif fonts are also called roman typefaces) and

are good for games that take place in historical settings or need a semblance of pretend “historical importance” (in

their own world).

Figure 298: Example of a serif font (DejaVu Serif)

Serif fonts look better on paper and could come out as a bit harder to read on screens. A famous serif font is Times

New Roman.

On the opposite side, we have sans-serif fonts, where such small strokes are absent. Sans-Serif fonts seem easier

to read on screens and look simpler, but they don’t look as good on paper, when long text bodies are involved.

Figure 299: Example of a sans-serif font (DejaVu Sans)

A famous sans-serif font is Arial.

13.4.1.2 Proportional and Monospaced fonts

The majority of fonts used today are proportional, where each letter occupies its own space proportional to its own

width. Examples of proportional fonts are Times New Roman and Arial.

Figure 300: Example of a proportional font (DejaVu Serif)

Notice the difference in width between certain pairs of letters, like “i” and “o” or “a” and “l”.

Proportional fonts are good for general text that don’t have any particular constraint.

On the opposite side, there aremonospaced fonts, also called fixed-width fonts. In these font families, each letter

occupies the same amount pre-defined width.

Figure 301: Example of a monospaced font (Inconsolata)

13 CREATING YOUR ASSETS 344



2D Game Development: From Zero To Hero

Again, notice how all letters occupy the same horizontal space.

Monospaced fonts are used for computer texts, coding and ascii-art. Examples of monospaced fonts are Courier

New and Inconsolata.

13.4.2 Using textures to make text

If you want to make text to show on the screen, an idea could be creating a sprite sheet that contains all the

characters that you want to use, then you can split it at runtime and (knowing that each letter is in a grid) you can

index each letter by its position and write text.

Let’s imagine the simplest case: we need to use only uppercase letters, and our sprite sheet is 1 row by 26 columns:

Figure 302: A simple spritesheet for rendering text using textures

That looks awfully similar to an array, doesn’t it? We just need to know how big each tile is (and the easiest way to

do so it making them all the same size) and their index in the array, connect them to a letter and we can make text!

0 1 2 3 4 5 6

...

Figure 303: Indexing our spritesheet for rendering

So, if we were to write the word “HELLO”, we would need the letters at index 7, 4, 11 (twice) and 14. If the tiles were

32 x 32 pixels, we would need a surface that is 32 pixels tall and 160 pixels wide.

The code to make text from a texture could look something like this:

Listing 71: A simple algorithm to create a text using a texture

1 in t TILE_WIDTH = 32;

2 in t TILE_HEIGHT = 32;

3 Surface SPRITESHEET = engine.load_spritesheet("resources/font.png");

4

5 function get_cell_from_letter(char letter) -> in t {

6 /*

7 * Here we will use a bit of ASCII magic , each letter

8 * has a "number attached to it", related to its position

9 * in the ASCII table. A starts at position 65 and each letter

10 * follows , until Z at position 90.

11 * This means we can "convert" each letter to its ASCII index ,

12 * subtract 65 and have our "array index"

13 */

14 in t ascii_index = utils.ascii_index(letter);

15 in t array_index = ascii_index - 65;

16 return array_index;

13 CREATING YOUR ASSETS 345



2D Game Development: From Zero To Hero

17 }

18

19 function make_text(string to_write) -> Surface{

20 // First , we create the surface to write the text onto

21 in t surface_width = TILE_WIDTH * to_write.length ();

22 Surface final_text = new Surface(surface_width , TILE_HEIGHT);

23 // This will keep track of the left side of the first free "cell"

24 in t current_pixel = 0;

25 // Now we iterate each letter of the word we want to render

26 for (letter in to_write){

27 // First , we need to find which cell corresponds to the letter

28 in t letter_cell = get_cell_from_letter(letter);

29 // After that , we need to get the subsurface , which contains only the letter

30 // It will start at letter_cell * TILE_WIDTH

31 Surface graphical_letter = SPRITESHEET.get_subsurface(

32 left = letter_cell * TILE_WIDTH ,

33 top = 0,

34 width = TILE_WIDTH ,

35 height = TILE_HEIGHT

36 );

37 // Now that we have the subsurface , we can draw it on our final surface , to render the

text

38 final_text.draw(graphical_letter , (current_pixel , 0));

39 // Now we prepare for the next loop , by increasing the current pixel by 32 (thus moving

40 // our "cursor" right)

41 current_pixel += TILE_WIDTH;

42 }

43 // After the loop exits , our text is ready to be used

44 return final_text;

45 }

And that’s how you get a text from a texture. Pun (maybe) not intended.

Rendering style Spritesheet-based

When to use it When you need very complex shapes and colors (even multiple colors in the same

letter).

Advantages Customizability. Simplicity (once you have created the rendering functions). May save

some space compared to other methods (you only have the characters that you need).

Editing the font doesn’t need extra programs (you just need your usual spritesheet

editor).

Disadvantages Scaling and resizing can be problematic: scaling up may look fuzzy (if filtering is

applied) or pixellated (if no filtering is applied), scaling down can result in loss of shape

and detail.

13 CREATING YOUR ASSETS 346



2D Game Development: From Zero To Hero

13.4.3 Using Fonts to make text

Another way to make text is using fonts: there are a couple of formats you can use, like TTF and OTF.

The advantage of this system is that usually well supported by the engine or library that you use. This means that

you don’t need to write code exclusive to font rendering, which means you don’t have to write code that may contain

bugs itself.

There are also some limitations, due to how fonts are built: you can only use a single color, for instance.

Rendering style Font-based

When to use it When you want fonts that won’t lost detail or crispness when they get resized.

Advantages Rendering functions are usually part of the engine or library. Fonts resist resizing very

well, being usually based on vector graphics.

Disadvantages Editing fonts requires specific programs. Can only use one color at a time. Limited

customizability.

13.5 Shaders

13.5.1 What are shaders

Shaders are technically small programs that (usually) run inside your Graphics Card (GPU). In gaming they are usually

used for post-processing and special effect, allowing to free the CPU from a lot of workload, using the specialized

GPU capabilities.

Shaders can be classified in different groups:

• 2D Shaders: These shaders act on textures and modify the attributes of pixels.

– Pixel (Fragment) Shaders: Used to compute color and other attributes relating to a single output

pixel. They can be used for blur, edge detection or enhancement and cel/cartoon shading.

• 3D Shaders: These shaders act on 3D models or other geometry.

– Vertex Shaders: These shaders are run once per vertex given to the GPU, converting the 3D position

in virtual space to the 2D coordinates of your screen. These shaders cannot create any new geometry.

– Geometry Shaders: These shaders can create new primitives, like points or triangles.

– Tessellation Shaders: These shaders allow to divide simple meshes into finer ones at runtime, this

allows the meshes closest to the camera to have finer details, while the further ones will be less detailed.

– Primitive Shaders: Akin to the computing shaders, but have access to data to process geometry.

• Computing Shaders: These shaders are not limited to graphics, but are related to the world of GPGPU

(General Purpose computing on GPU), these can be used to further stages in animation or lighting.

13.5.2 Shader Programming Languages

There are numerous programming languages, depending on the platform and libraries you are using to program

your game.

13 CREATING YOUR ASSETS 347



2D Game Development: From Zero To Hero

If you are using OpenGL, you should use the official OpenGL Shading Language, called GLSL.

Listing 72: Simple GLSL Fragment shader

1 #ifdef GL_ES

2 precision lowp float;

3 #endif

4

5 uniform float u_time;

6

7 void main() {

8 gl_FragColor = vec4 (1.0 ,0.0 ,0.0 ,1.0);

9 }

If you are using Direct3D, you should instead use the “High Level Shader Language”, also called HLSL.

If instead you want to use Vulkan, you will need to use the SPIR-V (Standard Portable Intermediate Representation)

format, but the good news is that (at the time of writing) you can convert your GLSL code into SPIR-V and use it with

Vulkan.

Modern engines, like Unity and Unreal Engine also include GUI node-based editors that help you create new shaders

by using directed graphs, without using any code.

Figure 304: Godot’s “Visual Shader” Editor

13.5.3 The GLSL Programming Language

GLSL is a programming language that is syntactically close to C, thus if you know a bit of the C programming language,

GLSL will at least “look” familiar.

[This section is a work in progress and it will be completed as soon as possible]

13.5.3.1 The data types

There are many data types in GLSL, here is a quick list of data types supported in GLSL.

13 CREATING YOUR ASSETS 348



2D Game Development: From Zero To Hero

13.5.3.1.1 Non-vector types

Among these we find “the usual suspects”, that means:

• bool a standard conditional type, it can be true or false;

• int a standard 32-bit integer, with sign;

• uint a 32-bit integer without sign;

• float single precision floating point number;

• double double precision floating point number.

13.5.3.1.2 Vector Types

Non-vector types can be aggregated into vectors, which can have 2, 3 or 4 elements:

• bvec2 bvec3 bvec4 vector of booleans, with 2,3 or 4 elements;

• ivec2 ivec3 ivec4 vector of signed integers, with 2,3 or 4 elements;

• uvec2 uvec3 uvec4 vector of unsigned integers, with 2,3 or 4 elements;

• vec2 vec3 vec4 vector of single-prevision floating point numbers;

• dvec2 dvec3 dvec4 vector of double-prevision floating point numbers.

13.5.3.1.3 Matrices

Matrices are groups of floating points (either single or double prevision) that have n×m size.

The type is matnxm (for instance mat2x3 represents a 2×3matrix). A shortcut for an n×nmatrix is matn (so mat3 would

represent a 3× 3 matrix).

[This section is a work in progress and it will be completed as soon as possible]

13.5.4 Some GLSL Shaders examples

[This section is a work in progress and it will be completed as soon as possible]

13 CREATING YOUR ASSETS 349



Part 5: Advanced Topics



2D Game Development: From Zero To Hero

14 Design Patterns

Patterns mean “I have run out of language.”

Rich Hickey

Design Patterns are essentially “pre-made solutions for known problems” and can help decoupling elements of your

game, increasing maintainability.

Note!

This book will introduce design patterns as they were explained in the famous “Gang

of Four” book: “Design Patterns: Elements of Reusable Object-Oriented Software”. In

some languages (for instance ones that have functions as first-class objects) such pat-

terns can take different forms. This book will tell you which pattern does what, along

with a rough implementation, but it’s up to you to check the most efficient one in your

favourite language.

Pitfall Warning!

When people find out about design patterns, they usually come up with the “everything

is a nail syndrome”. Don’t overuse design patterns only because it looks “cool” or

“because it may solve a future problem”. What matters is your game, right now.

Design patterns are not a cure-all, they can introduce overhead and could lead to over-

engineering: balance is key when it comes to creating a game (or any software in

general).

Leave future problems to your future self.

14.1 Creational Design Patterns

Creational patterns is a category of design patterns that deal with object creation mechanisms, that means creating

objects in a way that best suits the single situation.

14.1.1 Singleton Pattern

Sometimes it can be necessary to ensure that there is one and only instance of a certain object across the whole

program, this is where the singleton design pattern comes into play.

To make a singleton, it is necessary to hide (make private) the class constructor, so that the class itself cannot be

instantiated via its constructor.

After that, we need a static method that allows to get the singleton’s instance, the method needs to be static to

make it callable without an instance of the singleton class.

The UML diagram for a singleton is really simple.

14 DESIGN PATTERNS 351



2D Game Development: From Zero To Hero

Singleton

singleton INSTANCE

Singleton()
getInstance()

Figure 305: The UML diagram for a singleton pattern

Listing 73: Example of a singleton pattern

1 class Singleton {

2

3 s ta t i c Singleton INSTANCE = new Singleton ();

4

5 // This makes the constructor impossible to use outside of the class

6 constructor () {}

7

8 @staticmethod

9 function getInstance () -> Singleton{

10 return INSTANCE;

11 }

12 }

The previous singleton instantiates immediately, which may not always be necessary, in that case a good idea could

be implementing the so-called “lazy loading”, where the instantiation happens the first time you ask the object for

its own instance.

Listing 74: Example of a singleton pattern with lazy loading

1 class LazySingleton {

2

3 s ta t i c LazySingleton instance = nul l ;

4

5 // Block the constructor from working , we don't want to build more than one instance

6 constructor () {}

7

8 @staticmethod

9 function getInstance () -> LazySingleton{

10 // Multi -threading: manage race conditions

11 // ----- Critical region start -----

12 i f (instance == nul l ) {

13 instance = new LazySingleton ();

14 }

15 // ----- Critical region end -----

16

17 return instance;

18 }

19 }

14 DESIGN PATTERNS 352



2D Game Development: From Zero To Hero

If multiple threads are involved in using a lazy-loading singleton, you may need to take care of preventing race

conditions[g] that could result in multiple instances of the singleton being created.

Many critics consider the singleton to be an “anti-pattern”, mostly because it is really overused and adds a possibly

unwanted “global state” (see it as a global variable, but in an object-oriented sense) into the application.

Before applying the singleton pattern, ask yourself the following questions:

• Do I really need to ensure that only one instance of this object is present in the whole program?

• Would the presence of more than one instance of this object be detrimental to the functionality of this program?

How?

• Does the instance of this object need to be accessible from everywhere in the program?

Table 52: Summary table for the Singleton Pattern

Pattern Name Singleton

When to Use it In all situations that strictly require one instance of an object, accessible globally.

Advantages Allows the class to control its own instantiation, allows for easier access to the sole

instance of a class.

Disadvantages Introduces some restrictions that may be unnecessary, introduces a global state into

the application.

14.1.2 Dependency Injection

Dependency Injection is a very simple concept that is really hard to explain. It is essentially used to avoid having

classes build instances of services (which may be other classes or functions) inside of themselves and instead

receiving such services from outside.

Let’s make a concrete example. You have a class that takes care of everything concerning a file upload: from getting

it from the internet, to logging to saving it to the hard disk.

A first implementation would look something like the following:

Read HTTP
Input Stream

Save to
Local File

Log to
Console

Figure 306: A naive implementation of a local file upload system

What would happen if, instead of a hard disk you need to transfer the files to an external service like S3, or maybe it

just needs to be saved into memory for further processing? You would probably need to duplicate the class to allow

for these new “services”.

Read HTTP
Input Stream

Save to
S3 Bucket

Log to
Console

Figure 307: A naive implementation of a file upload system on S3

14 DESIGN PATTERNS 353



2D Game Development: From Zero To Hero

A better solution for reuse would be having the “file saving service” separated from the entire “file upload” class,

and instead having this service “injected” onto the “file upload” class. This can happen via setter functions, via

constructors, builders, factories or even interface injection (where it’s the dependency interface that provides a

method to inject the dependency).

Read HTTP
Input Stream

Save to
S3 Bucket

Log to
Console

Log to
File

Save to
Local File

Saving
Interface

Logging
Interface

Figure 308: Using Interfaces and DI to build a flexible file upload

Since now the “file upload” class doesn’t depend on how or where the file is saved, you can also substitute such

“file saving service” with a mock during tests.

UploadSystem

saveFunction: function;

readStream();
saveFromHttp(stream: HttpStream);

saveFromHttp() uses both readStream()
and calls the saveFunction variable
as a function (it is a function reference)

SaveSystem

save(file:File);

S3SaveSystem

save(file: File);

LocalSaveSystem

save(file: File);

UploadSystemBuilder

build_system(type: str);

if type == "S3" then
create UploadSystem and assign S3SaveSystem
to its saveFunction

else if type == "Local" then
create UploadSystem and assign LocalSaveSystem
to its saveFunction

end if

«uses»

«instantiates»

Figure 309: Possible class structure for a DI file upload

Dependency injection can be divided in two main categories:

• Setter injection: In this case, an object has specific set()methods that allow you to set the dependency after

the object has been constructed. This allows also for changing the dependency on the fly (useful to change

the effect of a weapon, for instance);

• Constructor injection: In this case, the injection happens in the class’s constructor. The injected function-

ality is decided before the object that needs the dependency is constructed.

[This section is a work in progress and it will be completed as soon as possible]

14 DESIGN PATTERNS 354



2D Game Development: From Zero To Hero

Table 53: Summary table for the Dependency Injection Pattern

Pattern Name Dependency Injection

When to Use it In all situations that require a degree of configurability or where the behaviour of the

code needs to be changed without direct editing.

Advantages Decreased coupling, reusability, maintainability, flexibility, less boilerplate code, allows

for concurrent development of services, allows for easier unit testing.

Disadvantages Behaviour and construction are separated, which may make tracing code harder. May

hinder IDE automation if implemented using reflection or dynamic programming.

14.1.3 Prototype

Sometimes, in our game, we need to decide which objects to create at runtime, as well as instantiate dynamically

loaded classes. In these cases the prototype pattern comes to the rescue: we define a “prototype” that allows to

create classes by cloning itself.

There is the UML diagram for the pattern:

Prototype

clone()

ConcretePrototype

clone()

Client

doStuff()
calls "prototype.clone()"

the clone() method returns
a copy of the class

«import»

Figure 310: Diagram of the Prototype Pattern

Table 54: Summary table for the Prototype design pattern

Pattern Name Prototype

When to Use it When you need to either decide the objects to create at runtime or instantiate

dynamically loaded classes.

Advantages Decoupling, added flexibility.

Disadvantages May become overused, depending on the situation can be difficult to implement.

[This section is a work in progress and it will be completed as soon as possible]

14.2 Structural Design Patterns

Structural patterns is a category of design patterns that deals with the relationships between entities, with the

objective of simplifying the realization of such relationships.

14 DESIGN PATTERNS 355



2D Game Development: From Zero To Hero

14.2.1 Flyweight

Sometimes it may be necessary to keep track of a large number of very similar objects.

Imagine a lot of sprites of trees that have the same texture and size, but have different positions: it could prove to

be really resource-heavy to keep all the sprite objects in memory, each one with its own copy of the texture and size.

This could prove to be performance-heavy too, since all those textures will have to be moved to the GPU.

Here comes the Flyweight pattern: we try to share as much of the so-called “intrinsic state” of the objects between

the object that contain the so-called “extrinsic state”.

Common

mesh: Mesh
texture: Texture

FlyWeight1

common_component: Common
position: Vector
scaling_factor: float

FlyWeight2

common_component: Common
position: Vector
scaling_factor: float

This class contains the intrinsic state:
in this case we have the shared mesh
and texture

These classes contain the extrinsic state instead:
in this case the position and scaling factor
plus a pointer to the Common class

«use»«use»

Figure 311: UML Diagram of the Flyweight pattern

Below is an example code for the flyweight pattern.

Listing 75: Code for a flyweight pattern

1 class Common{

2 // Contains the common data for a 3D Object to be replicated

3 Mesh mesh;

4 Texture texture;

5 }

6

7 class FlyWeight{

8 // Contains only the necessary data to create an instance of the item

9 Common common_pointer;

10 Vector position;

11 f l oat scale_factor;

12 }

14 DESIGN PATTERNS 356



2D Game Development: From Zero To Hero

Random Trivia!

This is just speculation, but SFML’s graphics system may make use of the Flyweight

pattern: you need to load the image into a “Texture” first (which does all the low-level

lifting) and then you can instance an “Image” class which is more high-level. Many

images can refer to the same texture (which may be a Sprite Sheet).

Table 55: Summary table for the Flyweight Pattern

Pattern Name Flyweight

When to Use it When you need to support a large number of similar objects efficiently, when you need

to avoid creating a large number of objects.

Advantages Saves memory when a large number of similar objects is involved, avoids some of the

overhead given by the creation of many objects.

Disadvantages The intrinsic state must be “context independent”, so it cannot change (or all the

flyweights that refer to that state will change too). Flyweight instantiation requires

particular attention in multi-threaded environments, due to the shared memory.

14.2.2 Component/Composite Pattern

When building any game entity, we find that the complexity of the game entity itself literally explodes: a monolithic

class can include loads of different operations that should stay separate, such as:

• Input Handling

• Graphics and Animation

• Sound

• Physics

• …

At this point our software engineering senses are tingling, something is dangerous here.

A better alternative in bigger projects is splitting the monolithic class and create different components and allow for

their reuse later. Enter the Component pattern.

Client

simplecomponent: Component

Component

update()

ConcreteComponent1

update()

ConcreteComponent2

update()

Figure 312: Diagram of the Component Design Pattern

The client is connected to a list of Components that have the same interface (in the previous case, the update()

14 DESIGN PATTERNS 357



2D Game Development: From Zero To Hero

method), so each Game Entity can become a “container of components” that define its behaviour.

For instance, instead of having all the functionalities listed above, our game entity could have the following compo-

nents:

• Input Component

• Graphics Component

• Sound Component

• Physics Component

Which can be reused, extended and allow for further flexibility and follows more closely the DRY principle.

Here we can take a look at a sample implementation of the Component Design Pattern:

Listing 76: Example Implementation Of the Component Pattern

1 abstract class Component{

2 // Defines the abstract class/interface for the component pattern

3 abstract function update ();

4 }

5

6 class ConcreteComponent1 inher i ts from Component{

7 // Defines the concrete component number 1

8 function update (){

9 // Do Stuff

10 }

11 }

12

13 class ConcreteComponent2 inher i ts from Component{

14 // Defines the concrete component number 2

15

16 // The component can contain a list of other components that get updated

17 Component [] list = new vector of 9 Component;

18

19 function update (){

20 for (each component in list){

21 component.update ();

22 }

23

24 // Do Other Stuff

25 }

26 }

27

28 class Client{

29 ConcreteComponent1 first_component;

30 ConcreteComponent2 second_component;

31

32 function update (){

33 // This is the Client 's update function

34 first_component.update ();

14 DESIGN PATTERNS 358



2D Game Development: From Zero To Hero

35 second_component.update ();

36 }

37 }

Tip!

You can also think about components as “capabilities”: objects can be “movable”, so

they have an input or physics component, they can be “drawable” so they have a

graphics component, etc…

Table 56: Summary table for the Component/Composite design pattern

Pattern Name Component/Composite

When to Use it When you need to deal with a part-whole hierarchy where each component needs to be

treated equally.

Advantages Decoupling, added flexibility.

Disadvantages On bigger systems, the management may become really complex.

14.2.3 Decorator

There are some cases where we need to add or remove behaviours from a class at runtime, dynamically. The

decorator pattern gives a flexible alternative to subclassing and addresses this need.

DecoratedObject

void doStuff()

Concrete_DecoratedObject

void doStuff()

Decorator

DecoratedObject component

void doStuff()

Concrete_Decorator

void doStuff()

Figure 313: Diagram of the Decorator Pattern

As you can see the decorator makes heavy use of abstract classes and interfaces, which most programming lan-

guages implement without any issue.

14 DESIGN PATTERNS 359



2D Game Development: From Zero To Hero

Table 57: Summary table for the Decorator design pattern

Pattern Name Decorator

When to Use it When you need to add or remove functionalities from a class dynamically. Very useful

for applying memoization techniques.

Advantages Decoupling, added flexibility.

Disadvantages Usage of interfaces or abstract classes can seem a bit daunting at the beginning, it may

cause an explosion in number of classes.

[This section is a work in progress and it will be completed as soon as possible]

14.2.4 Adapter

Let’s face it, not everything is straight out compatible with everything else. It happens with power plugs, why

wouldn’t it happen in a world as varied as software development?

Sometimes we need an adapter, and that’s exactly what this design pattern is: provide a layer of compatibility

between two incompatible interfaces.

The adapter design pattern can be implemented in two ways, but first let’s check the summary table.

Table 58: Summary table for the Adapter design pattern

Pattern Name Adapter

When to Use it When you need to provide a layer of compatibility between two incompatible interfaces

or you need to provide an “alternative interface” to a class.

Advantages Decoupling, added flexibility, better compatibility, code reuse.

Disadvantages Needing many adapters may mean there is a deeper structural problem with your

program.

14.2.4.1 Object Adapter

The “object adapter” is the version where the adaptor delegates the task to the adaptee at runtime. To do so, it has

an instance of the adaptee class as its class field.

Client

adaptor: Target

doStuff()

Target

compatibleMethod()

Adaptor

adaptee: Adaptee

compatibleMethod()

The adapter "wraps"
the adaptee

Adaptee

incompatibleMethod()

Figure 314: Diagram of the Object Adapter Pattern

14 DESIGN PATTERNS 360



2D Game Development: From Zero To Hero

[This section is a work in progress and it will be completed as soon as possible]

14.2.4.2 Class Adapter

The “class adapter” version instead inherits the adaptee class at compile-time. Since the adaptor inherits from the

adaptee class, the adaptee’s methods can be called directly, without needing to refer to a class field.

Client

adaptor: Adaptor

doStuff()

Target

compatibleMethod()

Adaptor

compatibleMethod()

The adapter subclasses
the adaptee and realizes
the target interface

Adaptee

incompatibleMethod()

Figure 315: Diagram of the Class Adapter Pattern

[This section is a work in progress and it will be completed as soon as possible]

14.2.5 Facade

There are times where you have a very complex library, with a very complex interface, that is extremely complex to

interact with. The Facade pattern hides such complexity behind a simple-to-use interface that works by delegation.

Package1 Package2

Class1

void doFirstThing()

Class2

void doSecondThing()

Class3

void doLastThing()

Facade

void doComplexThing()

Client

Figure 316: Diagram of the Facade Pattern

This pattern should be used with extreme care and only when necessary, since adding “levels of indirection” will

make the code more complex and harder to maintain.

Table 59: Summary table for the Facade design pattern

Pattern Name Facade

14 DESIGN PATTERNS 361



2D Game Development: From Zero To Hero

When to Use it When you need to present a simple interface for a complex system or you want to

reduce the dependencies on a subsystem.

Advantages Decoupling, added readability.

Disadvantages May become overused, delegating adds a bit of overhead, sometimes it may be

wrongly used where either an adapter or a decorator is needed. May become a single

point of failure[g].

Here’s an example of a possible facade pattern:

Listing 77: Example Implementation Of the Facade Pattern

1 class FirstService{

2 // Implementation here ...

3 }

4

5 class SecondService{

6 // Implementation here ...

7 }

8

9 class Facade{

10 /*

11 * This class hides the complexities of using

12 * FirstService and SecondService from the user

13 * by "wrapping" them in a comfortable startAll

14 * function

15 */

16 FirstService service1;

17 SecondService service2;

18

19 constructor (){

20 this.service1 = FirstService ();

21 this.service2 = FirstService ();

22 }

23

24 function startAll () -> boolean{

25 /*

26 * The facade starts all the services and does

27 * some status checking , this is hidden from the

28 * user.

29 * Returns true if all services started successfully

30 * false otherwise

31 */

32 boolean firstServiceStarted = this.service1.start();

33 i f (! firstServiceStarted){

34 return False;

35 }

36 boolean secondServiceStarted = this.service2.start();

14 DESIGN PATTERNS 362



2D Game Development: From Zero To Hero

37 i f (! secondServiceStarted){

38 return False;

39 }

40 // Here everything started successfully

41 return True;

42 }

43 }

14.2.6 Proxy

Sometimes, the access to a certain object may be problematic or not directly possible, for instance when:

• The object is available only remotely;

• The object needs a form of access control;

• The object is too heavy to complex to be available in memory at all times.

In these cases, the proxy pattern is the pattern that may solve your issues: in its most general form, a proxy is an

interface to another object. Such interface may have additional operations attached to it (for instance for access

control), or it could represent a “virtual object”, where the real object is located somewhere else.

Client Subject

operation();

RealSubject

operation();

Proxy

realsubject: RealSubject;

operation();

realsubject.operation();

«delegate»

Figure 317: Diagram of the Proxy Pattern

This can be very useful in implementing multiplayer systems: a well-designed system won’t care if the input con-

trolling a character come from the keyboard, a gamepad, another computer (while playing multiplayer) or a file (for

replays, for instance). The proxy pattern will make it so that everything has the same interface and the “user object”

(as in the object that uses the proxy) won’t have to worry about what’s on “the other side of the proxy”.

Listing 78: Example Implementation Of the Proxy Pattern

1 class User{

2 // This class represents a user , with their permissions

3 // ...

4 function can_do_thing () -> boolean{

5 // Changes according to user permissions

14 DESIGN PATTERNS 363



2D Game Development: From Zero To Hero

6 // ...

7 }

8 }

9

10 class Request{

11 // This class represents a web request

12 constructor(User user){

13 this.user = user;

14 }

15 }

16

17 abstract class WebPage{

18 /*

19 * Represents a call to a web page

20 */

21 // This function gets implemented in the concrete classes;

22 abstract function get(Request request) -> HttpResponse;

23 }

24

25 class WebPageProxy inher i ts from WebPage{

26 // Represents an authentication proxy for a web page

27 function get(Request request) -> HttpResponse{

28 // Get the requesting user

29 User requesting_user = request.user;

30 i f (requesting_user.can_do_thing ()){

31 return superclass.get(request);

32 }else{

33 return HttpResponse("This user cannot access this page");

34 }

35 }

36 }

37

38 in t main(){

39 User user = User();

40 // The following line is valid due to polimorphism

41 WebPage page = WebPageProxy ();

42 // If the user has permission the page will come through.

43 page.get(Request(user));

44 }

The proxy pattern is also very useful for lazy-loading: the Proxy object will pretend to be the original object, until the

object is really needed (thus moving the instantiation weight to the “first use” of an object), then it will just “pass

through” every command.

Pattern Name Proxy

When to Use it When you need to represent a remote object, a complex/heavy object that can’t fit in

memory or if you need to control access to an object. Useful for lazy loading, replays or

remote play.

14 DESIGN PATTERNS 364



2D Game Development: From Zero To Hero

Advantages Decoupling.

Disadvantages When used for lazy-loading, “passing through” function calls will add function pointers

to the stack, which may slow down performance.

14.3 Behavioural Design Patterns

Behavioural patterns is a category of design patterns that deals with communication between objects. This is done

by identifying common communication patterns between such objects and abstracting it.

14.3.1 Command Pattern

It may be necessary, during our software development, to abstract our functions into something that can be assigned

and treated as an object.

Many programming languages now feature functions as “first class citizens”, allowing to treat functions as objects:

assigning functions to variables, calling functions, lambdas, inline functions, functors, function pointers…

The command pattern allows us to abstract a function (or any executable line of code) into its own object that can

be handled as such, allowing us to package a request into its own object for later use.

This pattern can be useful to code GUIs, making actions in our games that can be undone, macros, replays and much

more.

Invoker

command: Command

Command

execute()

Command1

execute()

command

Figure 318: UML diagram for the Command Pattern

Listing 79: Example code for the Command Pattern

1 abstract class Command{

2 // This is the abstract class that will be used as interface

3 abstract function execute ();

4 }

5

6 class JumpCommand inher i ts from Command{

7 // This will implement the execute method

8 function execute (){

9 jump();

14 DESIGN PATTERNS 365



2D Game Development: From Zero To Hero

10 }

11

12 function jump(){

13 // DO STUFF

14 }

15 }

Table 61: Summary table for the Command Pattern

Pattern Name Command

When to Use it In all situations where you want to avoid coupling an invoker with a single request or

when you want to configure an invoker to perform a request at runtime.

Advantages Allows for encapsulation, less coupling, more flexibility and customization at runtime.

Disadvantages Late binding and objects may introduce some overhead.

14.3.2 Observer Pattern

The observer pattern is used to implement custom event handling systems, where an object automatically reacts to

events generated by another object.

There are 2 main objects used in an observer pattern:

• The Subject: sometimes called “Observed Object”

• The observer: sometimes called “Dependent Object”

The subject is the creator of a “stream of events” that is consumed by the observer objects.

The subject implements in its structure a list of observers that will be notified when a change occurs, as well as

methods to register (add) a new observer as well as to unregister (remove) an existing observer, while the observers

will implement a method that will be called by the subject, so that the observers can be notified of such change.

Here we can see an UML diagram of the observer pattern:

Observer

update()

Subject

observers: List[Observer]

registerObserver(new: Observer)
unregisterObserver(toRemove: Observer)
notifyObservers()

ConcreteObserver

update()

AnotherConcreteObserver

update()

Figure 319: The UML diagram of the observer pattern

14 DESIGN PATTERNS 366



2D Game Development: From Zero To Hero

Here we can see the Observer abstract class (it can be an interface), a concrete subject and two Concrete Observers

that implement what required by the Observer.

Here we can see an implementation of the observer pattern:

Listing 80: Code for an observer pattern

1 class Subject{

2 /* This is the observed class that contains the list of observers and

3 * the notifyObservers method */

4

5 Observer [] observers = new list of Observer;

6

7 function register_observer(observer){

8 observers.append(observer);

9 }

10

11 function notifyObservers (){

12 for (each observer in observers){

13 observer.update ();

14 }

15 }

16 }

17

18

19 class Observer{

20 /* This is the class that contains the update method , used to force

21 * an update in the observer */

22

23 function update (){

24 print("I have been updated!");

25 }

26 }

27

28

29 subject = Subject ();

30 observer = Observer ();

31 subject.register_observer(observer);

32 subject.notifyObservers ();

If needed, you can pass information between the subject and the observers just by calling each update()method with

the necessary arguments.

Table 62: Summary table for the Observer Pattern

Pattern Name Observer

When to Use it Event Handling systems, making objects react to other objects’ actions

14 DESIGN PATTERNS 367



2D Game Development: From Zero To Hero

Advantages Decoupling, added flexibility, more performing than if statements for conditions that

happen rarely.

Disadvantages Can be a bit hard to set up, makes the architecture more complex, if un-registration is

not done well there could be serious memory leaks (even in garbage-collected

languages).

14.3.3 Strategy

In some situations it may be necessary to select a single algorithm to use, from a family of algorithms, and that

decision must happen at runtime.

In this case, the strategy pattern (also known as the “policy pattern”), allows the code to receive runtime instructions

over what algorithm to execute. This allows for the algorithm to vary independently from the client that makes use

of such algorithm.

Client Strategy

algorithm()

ConcreteStrategy1

algorithm()

ConcreteStrategy2

algorithm()

ConcreteStrategy3

algorithm()

Figure 320: The UML diagram of the strategy pattern

Listing 81: Code for a strategy pattern

1 abstract class Strategy{

2 /*

3 * This class defines the strategy interface the client will refer to

4 */

5

6 // This algorithm will be implemented by the subclasses

7 abstract function algorithm ();

8 }

9

10 class ConcreteStrategy1 inher i ts from Strategy{

11 function algorithm () override{

12 // Real implementation of the algorithm

13 // DO STUFF

14 }

15 }

16

17 class ConcreteStrategy2 inher i ts from Strategy{

18 function algorithm () override{

19 // Real implementation of the algorithm

14 DESIGN PATTERNS 368



2D Game Development: From Zero To Hero

20 // DO STUFF SLIGHTLY DIFFERENTLY

21 }

22 }

23

24 // Example Usage

25 function main(){

26 Strategy to_execute = nul l ;

27 i f (condition){

28 to_execute = new ConcreteStrategy1 ();

29 }else{

30 to_execute = new ConcreteStrategy2 ();

31 }

32 to_execute.algorithm (); // This will execute 1 or 2 depending on "condition"

33 }

Table 63: Summary table for the Strategy Pattern

Pattern Name Strategy

When to Use it Every time you need to decide which algorithm to execute at runtime.

Advantages Decoupling, added flexibility.

Disadvantages Can cause proliferation of similarly-looking concrete strategies, late binding on

functions and the object oriented nature of the pattern could create some overhead.

14.3.4 Chain of Responsibility

Sometimes we have the necessity of handling conditionals that are themselves connected to runtime conditions.

This is where the chain of responsibility pattern comes into play, being essentially an object-oriented version of an

if ... else if ... else statement.

Sender

handler: Handler

Handler

handle_request()

Receiver1

handle_request()

Receiver2

handle_request()

Receiver3

handle_request()

handler
successor

Figure 321: UML Diagram of the Chain of Responsibility Pattern

As can be seen from the diagram, the sender is not directly connected to the receiver, but instead it’s connected to

a “Handler” interface, making them independent.

As with a chain of responsibility in a company relays a task to “higher ups” if the task cannot be handled, the chain

of responsibility pattern involves each received reviewing the request and if possible, process it, if not possible, relay

it to the next receiver in the chain.

14 DESIGN PATTERNS 369



2D Game Development: From Zero To Hero

Listing 82: Code for a chain of responsibility pattern

1 abstract class Handler{

2 // This is the handler abstract/class interface that the sender connects to

3 Handler next; // The next handler in the chain

4

5 function handle_request (){

6 i f (condition){

7 // In case I can handle this request

8 return real_handler ();

9 }

10

11 i f (next i s not nu l l ){

12 next.handle_request ();

13 }

14 }

15

16 // This function gets implemented in the concrete classes

17 abstract function real_handler ();

18

19 function add_handler(Handler new_handler) -> Handler{

20 next = new_handler;

21 return next; // Allows for chaining .add_handler ().add_handler ()...

22 }

23 }

Table 64: Summary table for the Chain of Responsibility Pattern

Pattern Name Chain of Responsibility

When to Use it When you need to implement flexible if…else if…else statements that change on

runtime. When you want to decouple a sender from a receiver.

Advantages Decoupling, added flexibility.

Disadvantages Some overhead is added by the objects and late binding, could lead to proliferation of

similar-looking handlers/receivers.

14.3.5 Visitor

[This section is a work in progress and it will be completed as soon as possible]

14.4 Architectural Design Patterns

Architectural patterns are a category of design patterns that provide reusable solutions to recurring problems in

creating software systems and structures. They can address problems like minimizing a defined risk or dealing with

performance limitations, for instance.

14 DESIGN PATTERNS 370



2D Game Development: From Zero To Hero

14.4.1 Service Locator

The service locator pattern is very useful when you need to manage connections between objects, usually at runtime:

instead of hard-coding each reference of each service, you have a “central hub” that you can ask such connections

to.

This allows you to swap out (or modify) individual parts of your program without affecting the rest of your software,

which can prove useful for testing.

[This section is a work in progress and it will be completed as soon as possible]

14 DESIGN PATTERNS 371



2D Game Development: From Zero To Hero

15 Useful Containers and Classes

Eliminate effects between unrelated things. Design components that are

self-contained, independent, and have a single, well-defined purpose.

Anonymous

In this chapter we will introduce some useful data containers and classes that could help you solve some issues or

increase your game’s maintainability and flexibility.

15.1 Resource Manager

A useful container is the “resource manager”, which can be used to store and manage textures, fonts, sounds and

music easily and efficiently.

A resource manager is usually implemented via generic programming, which helps writing DRY code, and uses

search-efficient containers like hash tables, since we can take care of loading and deletion during loading screens.

First of all, we need to know how we want to identify our resource; there are many possibilities:

• An Enum: this is usually implemented at a language-level as an “integer with a name”, it’s light but every

time we add a new resource to our game, we will need to update the enum too;

• The file path: this is an approach used tomake things “more transparent”, but every time a resource changes

place, we will need to update the code that refers to such resource too;

• A mnemonic name: this allows us to use a special string to get a certain resource (for instance

skeleton_spritesheet), and every time our resource folder changes, we will just need to update our load-

ing routines (similarly to the Enum solution).

Secondarily, we need to make sure that the container is thread-safe (see more about multi-threading in the multi-

threading section), since we will probably need to implement a threaded loading screen (see how to do it here) to

avoid our game locking up during resource loading.

[This section is a work in progress and it will be completed as soon as possible]

15.2 Animator

This can be a really useful component to encapsulate everything that concerns animation into a simple and reusable

package.

The animation component will just be updated (like the other components) and it will automatically update the frame

of animation according to an internal timer, usually by updating the coordinates of the rectangle that defines which

piece of a sprite sheet is drawn.

[This section is a work in progress and it will be completed as soon as possible]

15 USEFUL CONTAINERS AND CLASSES 372



2D Game Development: From Zero To Hero

15.3 Finite State Machine

A finite state machine is a model of computation that represents an abstract machine with a finite number of possible

states but where one (or a finite number) of states can be “in execution” at a given time.

We can use a finite state machine to represent the status of a player character, like in the following diagram:

Figure 322: Diagram of a character’s state machine

Each state machine is made out of two main elements:

• states which define a certain state of the system (for the diagram above, the states are: Idle, Crouching,

Jumping and Stomping);

• transitions which define a condition and the change of state of the machine (for the diagram above there

are two “Press Down” transitions, one “Release Down” and one “Press Space”)

State machines are really flexible and can be used to represent a menu system, for instance:

Figure 323: Diagram of a menu system’s state machine

In this more convoluted diagram we can see how pressing a certain button or clicking a certain option can trigger a

state change.

Each state can be created so it has its own member variables and methods: in a menu system it can prove useful

to have each state have its own update(dt) and draw() functions to be called from the main game loop, to improve on

the code readability and better usage of the nutshell programming principle.

15 USEFUL CONTAINERS AND CLASSES 373



2D Game Development: From Zero To Hero

Listing 83: A simple finite state machine

1 class FSM(){

2 /*

3 * This class defines a Finite State Machine

4 * The currently active state is represented by a function

5 * pointer

6 */

7 functionptr current_state = nul l ;

8

9 function setState(functionptr f){

10 /*

11 * Sets the state , from this point on , update will

12 * change its strategy

13 */

14 this.current_state = f;

15 }

16

17 function update( f l oat dt){

18 // If there is a current state , execute it

19 i f (this.current_state != nul l ){

20 this.current_state(dt);

21 }

22 }

23 }

The finite state machine can be used as a brain inside of anything, and use functions to commutate how things react

to external events:

Listing 84: An example of usage of a FSM

1 class Enemy(){

2 /*

3 * Represents a simple enemy

4 */

5 // ...

6 const f loat PURSUETIME = 10.0;

7 f l oat position_x = 0.0;

8 f l oat position_y = 0.0;

9 Timer pursue_timer = new Timer();

10 FSM brain = new FSM();

11

12 constructor( in t x, in t y){

13 this.position_x = x;

14 this.position_y = y;

15 brain.setState(this.patrol);

16 }

17

18 function patrol( f l oat dt){

19 // Normal patrolling of the enemy

15 USEFUL CONTAINERS AND CLASSES 374



2D Game Development: From Zero To Hero

20 // Move , turn , path find ...

21 i f (player i s sighted){

22 // ...

23 // Pursue for xx seconds

24 pursue_timer.set(this.PURSUETIME);

25 pursue_timer.start();

26 // Change FSM State

27 brain.setState(this.pursue);

28 }

29 }

30

31 function pursue( f l oat dt){

32 // Tries to pursue the enemy

33 i f (player i s in sight){

34 // Continue Pursuing , by resetting the timer

35 pursue_timer.set(this.PURSUETIME);

36 // ...

37 }

38 // ...

39 // If the enemy is not in sight for xx seconds

40 i f (pursue_timer.is_finished){

41 // go back to patrolling

42 brain.setState(this.patrol);

43 }

44 }

45

46 function update( f l oat dt){

47 // The enemy update function

48 // ...

49 pursue_timer.update(dt);

50 brain.update(dt);

51 // ...

52 }

53 }

Tip!

If, for some reason, you want even more abstraction and separation, you can use the

basics of a strategy pattern to implement your Finite State Machine.

15.4 Menu Stack

Although menus can be represented via a finite state machine, the structure of an User Interface (UI) is better suited

for another data model: the stack (or rather, something similar to a stack).

A stack allows us to code some other functions in an easier way, for instance we can code the “previous menu”

function by just popping the current menu out of the stack; when we access a new menu, we just push it into the

15 USEFUL CONTAINERS AND CLASSES 375



2D Game Development: From Zero To Hero

menu stack and the menu stack will take care of the rest.

Unlike the stacks we are used to, the menu stack can also be accessed like a queue (first in - first out) so you can

draw menus and dialog windows on top of each other, while the last UI element (on top of the stack) keeps the

control of the input-update-draw cycle.

Main Menu

Options Menu

Sound Options Menu being
rendered

Figure 324: Example of a simple menu stack

In the menu stack we also have some functionalities that may not be included in a standard stack, like a “clear”

function, which allows us to completely clean the stack: this can prove useful when we are accessing the main

game, since we may not want to render the menu “below” the main game, wasting precious CPU cycles.

[This section is a work in progress and it will be completed as soon as possible]

15.5 Particle Systems

Many special effects in games (like fire, dust and even falling leaves) are done using particle systems. Particle

systems consist mainly of 2 parts: the particles themselves and the emitters. This is where we will be focusing.

15.5.1 Particles

The basic building block of our particle system is the particle: which can represent a speck of dust, a puff of smoke

or a single leaf.

Figure 325: Some examples of particles

Tip!

Particles are a great candidate for a flyweight pattern. They usually share the same

texture, which is the heaviest component they have.

15 USEFUL CONTAINERS AND CLASSES 376



2D Game Development: From Zero To Hero

Let’s see an example of a particle class:

Listing 85: A simple particle class

1 class Particle{

2 /*

3 * This is a simple particle class , it contains a reference to

4 * its texture , as well as some state

5 */

6 Texture texture;

7 Vector2D position;

8 Vector2D velocity;

9 Vector2D acceleration;

10 f l oat lifespan;

11

12 constructor(Texture texture , Vector2D position , Vector2D velocity , Vector2D acceleration ,

f l oat lifespan = 2000){

13 // We prepare the particle for usage

14 this.texture = texture;

15 this.position = position;

16 this.velocity = velocity;

17 this.acceleration = acceleration;

18 this.lifespan = lifespan; // About 2 seconds by default

19 }

20

21 function update( f l oat dt){

22 // We update the velocity (assuming dt is in milliseconds)

23 this.velocity = this.velocity + this.acceleration;

24 // Then the position

25 this.position = this.position + this.velocity * dt;

26 // Now we update the lifespan of the particle;

27 this.lifespan = this.lifespan - dt;

28 }

29

30 function is_dead () -> boolean{

31 // Returns a boolean representing if the particle is dead

32 return this.lifespan <= 0;

33 }

34

35 function setPosition(Vector2D position){

36 // Sets the particle position

37 this.position = position;

38 }

39 }

Particle can be even more complex: for instance you could add a variable to track the particle’s rotation (useful

for falling leaves). Also if you want to take care of resetting the particle status (for recycling), you may need to

memorize the initial status in more variables, as well as include some more utility methods.

Listing 86: A more complex particle class

15 USEFUL CONTAINERS AND CLASSES 377



2D Game Development: From Zero To Hero

1 class Particle{

2 /*

3 * This is a simple particle class , it contains a reference to

4 * its texture , as well as some state

5 */

6 // The particle texture

7 Texture texture;

8 // Position , velocity and acceleration on the 2D plane

9 Vector2D position;

10 Vector2D velocity;

11 Vector2D acceleration;

12 // Lifespan of the particle

13 f l oat lifespan;

14 // Current angle of rotation , and relative velocity and acceleration

15 f l oat rotation;

16 f l oat angular_velocity;

17 f l oat angular_acceleration;

18

19 // Initial Status , for resetting

20 Vector2D initial_velocity;

21 Vector2D initial_rotation;

22 Vector2D initial_a_vel;

23 f l oat initial_lifespan;

24

25 constructor(Texture texture , Vector2D position , Vector2D velocity , Vector2D acceleration ,

f l oat lifespan = 2000, f l oat rotation = 0, f l oat a_vel = 0, f l oat a_accel = 0){

26 // We prepare the particle for usage

27 this.texture = texture;

28 this.position = position;

29 this.velocity = velocity;

30 this.acceleration = acceleration;

31 this.lifespan = lifespan; // About 2 seconds by default

32 // We also prepare the reset variables: the position will be set by the emitter

33 this.initial_lifespan = lifespan;

34 this.initial_velocity = velocity;

35 this.initial_a_vel = a_vel;

36 this.initial_rotation = rotation;

37 }

38

39 function update( f l oat dt){

40 // We update the velocity (assuming dt is in milliseconds)

41 this.velocity = this.velocity + this.acceleration;

42 // Then the position

43 this.position = this.position + this.velocity * dt;

44 // Then the rotation

45 this.angular_velocity = this.angular_velocity + this.angular_acceleration ;

46 this.rotation = (this.rotation + this.angular_velocity * dt) % 360; // Wrap to zero

when at 360 degrees

47 // Now we update the lifespan of the particle;

48 this.lifespan = this.lifespan - dt;

15 USEFUL CONTAINERS AND CLASSES 378



2D Game Development: From Zero To Hero

49 }

50

51 function is_dead () -> boolean{

52 // Returns a boolean representing if the particle is dead

53 return this.lifespan <= 0;

54 }

55

56 function reset(){

57 // This function resets the initial status of the particle

58 this.velocity = this.initial_velocity;

59 this.rotation = this.initial_rotation;

60 this.a_vel = this.initial_a_vel;

61 this.lifespan = this.initial_lifespan;

62 }

63 }

Tip!

If you want your particles to behave in a more “randomized way”, you may want to

save less “initial status variables” and delegate more of the “reset logic” to the particle

system.

15.5.2 Emitters

A particle emitter represents a spot that “emits particles”, it instantiates a list of particles and defines their initial

settings. An emitter usually takes care of ignoring (not rendering) “dead particles” (the ones whose lifespan is over)

as well as the ancillary cleanup.

Emitters can emit a stream of particles, as well as just a burst of them, or even both: it all depends on what you

want your system to do.

Tip!

Don’t think that you need a lot of particles to make a convincing effect: a well-coded

particle emitter can make a convincing (or at least enjoyable) effect with 5 to 10 parti-

cles per emitter.

Listing 87: A simple particle emitter class

1 class Emitter{

2 /*

3 * This is a simple particle emitter , it contains a list

4 * of particles and it updates and manages them

5 */

6 Vector2D origin;

7 Particle [] particles;

8

15 USEFUL CONTAINERS AND CLASSES 379



2D Game Development: From Zero To Hero

9 constructor(Vector2D location){

10 this.origin = location;

11 this.particles = new Particle [8]; // We prepare 8 particles

12 }

13

14 function update( f l oat dt){

15 // Update the entire system , by updating each particle

16 for (each particle in this.particles){

17 i f (not particle.is_dead ()){

18 particle.update(dt);

19 }

20 }

21 }

22 }

Pitfall Warning!

Try to avoid destroying “dead particles” and instantiate new ones every time, the con-

tinuous creation and destruction of classes will slow down your game considerably.

It’s much better to instantiate all the needed particles and “recycle” the dead ones as

necessary, by resetting their properties.

If you want to recycle particles, your emitter will be a little more complex.

Listing 88: A more complex (and complete) particle emitter class

1 class Emitter{

2 /*

3 * This is a simple particle emitter , it contains a list

4 * of particles and it updates and manages them

5 */

6 Vector2D origin;

7 Particle [] particles;

8 // Defines if this emitter streams continuously or only a burst of particles

9 boolean one_shot = False;

10

11 constructor(Vector2D location , boolean one_shot = False){

12 this.origin = location;

13 this.particles = new Particle [8]; // We prepare 8 particles

14 this.one_shot = one_shot;

15 }

16

17 function update( f l oat dt){

18 // Update the entire system , by updating each particle

19 for (each particle in this.particles){

20 i f (this.one_shot){

21 i f (particle.is_dead ()){

22 skip particle;

23 }else{

15 USEFUL CONTAINERS AND CLASSES 380



2D Game Development: From Zero To Hero

24 particle.update(dt);

25 }

26 }else{

27 i f (particle.is_dead ()){

28 particle.reset(); // Resets the state of the particle

29 particle.setPosition(this.origin);

30 }

31 particle.update(dt);

32 }

33 }

34 }

35 }

15.5.3 Force Application

Until now we’ve had constant acceleration applied to our particles, without keeping track of one of the most basic

principles of physics: Newton’s second law of motion.

As a reminder, here’s the formula:

force = mass · acceleration

To make it useful for our purposes, we will have “force” as the input of our function, while acceleration is its output,

so:

acceleration =
force

mass

This way we can influence the acceleration of a particle by using a force (represented as a vector), with a function

similar to the following:

Listing 89: A particle with mass and force application

1 class Particle{

2 /*

3 * This is a simple particle class , now it has some mass

4 * and a force application function

5 */

6 // ...

7 Vector2D acceleration;

8 // ...

9 f l oat mass;

10

11 constructor(Texture texture , Vector2D position , Vector2D velocity , Vector2D acceleration ,

f l oat lifespan = 2000, f l oat rotation = 0, f l oat a_vel = 0, f l oat a_accel = 0, f l oat mass =

1){

12 // We prepare the particle for usage the same way as earlier

15 USEFUL CONTAINERS AND CLASSES 381



2D Game Development: From Zero To Hero

13 // ...

14 this.mass = mass;

15 }

16

17 // ...

18

19 function applyForce(Vector2D force){

20 // This function influences the acceleration by applying force

21 Vector2D da = force / this.mass;

22 this.acceleration = this.acceleration + da;

23 }

24 }

This way, you can change how a particle behaves: for instance, you can apply a lateral force to a falling leaf to

simulate wind. This way the falling leaves will not seem boring.

15.6 Timers

Timers are an essential component in many game mechanics: Coyote Time and Jump Buffering are two prime

examples of timer-based mechanics.

If we want to execute a function every few seconds we need timers.

If we need to cap how many bullets we can shoot from a weapon, guess what? Timers.

Making a timer is not as complicated as it may seem, we need:

• A variable that keeps track of the time passed;

• A variable that keeps track of how much time needs to pass before the function gets executed;

• A pointer to said function;

• A boolean to track whether the timer is active or not;

• A boolean to decide whether the timer should be “one shot” or “continuous”.

Listing 90: A simple timer class

1 class Timer{

2 /*

3 * This is a simple timer class that executes a function after

4 * a certain amount of time

5 */

6 f l oat time;

7 f l oat set_time;

8 function_ptr function_to_execute;

9 bool one_shot;

10 bool active;

11

12 constructor( f l oat time , function_ptr function , bool one_shot = False , bool active=False){

13 // We prepare the timer and memorize the setting

14 this.time = time;

15 USEFUL CONTAINERS AND CLASSES 382



2D Game Development: From Zero To Hero

15 this.set_time = time;

16 // The function pointer should already be prepared with the arguments

17 this.function_to_execute = function;

18 // Is this timer one -shot then disable?

19 this.one_shot = one_shot;

20 // Does this timer need to be active when constructed?

21 this.active = active;

22 }

23

24 function update( f l oat dt){

25 i f (not this.active){

26 // We return directly if the timer is disabled

27 return;

28 }

29 // Like any other entity , we update it

30 this.time = this.time - dt;

31 // When the timer "ticks", we execute the function

32 i f (this.time <= 0){

33 this.function_to_execute ();

34 i f (this.one_shot){

35 // If this timer is a one -shot , we disable it

36 this.active = False;

37 }

38 // We reset the timer (we may need to re -activate it manually later)

39 this.time = this.set_time;

40 }

41 }

42 }

15.6.1 Accounting for “leftover time”

This timer is a nice and simple solution, but it has a small flaw: when the timer is set to execute continuously and

the function is executed, it doesn’t account for “leftover time”. This may be easier to understand with an example.

Let’s imagine that we have a timer that shoots a bullet every quarter of a second (250ms), our game is running at

a steady 30fps (which means each frame takes 33.33ms), our timer’s internal counter will behave like this:

• Frame 1: 250 - 33.33 = 216.67

• Frame 2: 216.67 - 33.33 = 183.34

• …

• Frame 7: 50.20 - 33.33 = 16.87

• Frame 8: 16.87 - 33.33 = -16.46 (Trigger the function and reset the timer)

• Frame 9: 250 - 33.33 = 216.67

Our timer doesn’t account for the over 16ms leftover that we had between frame 8 and frame 9, thus our timer will

be imprecise. This may seem an easy fix at first glance, but it is not.

15 USEFUL CONTAINERS AND CLASSES 383



2D Game Development: From Zero To Hero

15.6.1.1 A naive solution

The first solution that would come to mind would be substituting the timer variable assignment with a sum, thus

frames 7,8 and 9 would look like this:

• Frame 7: 50.20 - 33.33 = 16.87

• Frame 8: 16.87 - 33.33 = -16.46 (Trigger the function and reset the timer, by adding 250)

• Frame 9: 233.54 - 33.33 = 200.21

Here is the code:

Listing 91: A naive approach to account for leftover time

1 class Timer{

2 /*

3 * ...

4 * This is the same as the older version

5 * ...

6 */

7

8 function update( f l oat dt){

9 i f (not this.active){

10 // We return directly if the timer is disabled

11 return;

12 }

13 // Like any other entity , we update it

14 this.time = this.time - dt;

15 // When the timer "ticks", we execute the function

16 i f (this.time <= 0){

17 this.function_to_execute ();

18 i f (this.one_shot){

19 // If this timer is a one -shot , we disable it

20 this.active = False;

21 }

22 // We reset the timer differently , by adding the "set time"

23 this.time = this.time + this.set_time;

24 }

25 }

26 }

But what happens if we have a sudden lag spike, longer than the timer itself?

On Frame 7 we have 50.20 - 500 = -449.8, due to a Lag spike: last frame took a lot longer to process, we have to

execute our function and reset the timer, adding 250.

On Frame 8 we have -199.8 - 33.33 = -233.13 : The timer is trying to catch up to the lag spike, since the trigger

condition is still happening, we execute the function again and add 250 to the timer.

On Frame 9 we have 16.87 - 33.33 = -16.46 We’ve almost caught up with the lag spike, but we need to execute

15 USEFUL CONTAINERS AND CLASSES 384



2D Game Development: From Zero To Hero

the function a third time and add 250 to our timer.

Frame 10 behaves normally with 233.54 - 33.33 = 200.21.

Due to the lag spike the function gets executed three times, which is the technically correct way to “catch up” with

the number of times the timer should have triggered. But this may be an undesirable side effect.

If our game is already slowing down, executing even more functions won’t help, so a better approach would definitely

be avoiding calling functions more than we strictly need.

15.6.1.2 A different approach

To avoid this “catching up”, there are many ways, I’m going to write two of them in this book. The first is quite

simple: we add the set timer in a loop until we reach a value higher than zero.

Listing 92: A possible solution to account for leftover time

1 class Timer{

2 /*

3 * ...

4 * This is the same as the older version

5 * ...

6 */

7

8 function update( f l oat dt){

9 i f (not this.active){

10 // We return directly if the timer is disabled

11 return;

12 }

13 // Like any other entity , we update it

14 this.time = this.time - dt;

15 // When the timer "ticks", we execute the function

16 i f (this.time <= 0){

17 this.function_to_execute ();

18 i f (this.one_shot){

19 // If this timer is a one -shot , we disable it

20 this.active = False;

21 }

22 // We reset the timer differently , by adding the "set time" until we have a positive

value

23 while (this.time <= 0){

24 this.time = this.time + this.set_time;

25 }

26 }

27 }

28 }

This approach has a very minor issue: we are using a loop, so the further we stray away from zero, the more times

we will have to add. A second approach would be calculating a “multiplier” and directly apply that to the added

15 USEFUL CONTAINERS AND CLASSES 385



2D Game Development: From Zero To Hero

value, thus avoiding a loop.

Listing 93: Another possible solution to account for leftover time

1 class Timer{

2 /*

3 * ...

4 * This is the same as the older version

5 * ...

6 */

7

8 function update( f l oat dt){

9 i f (not this.active){

10 // We return directly if the timer is disabled

11 return;

12 }

13 // Like any other entity , we update it

14 this.time = this.time - dt;

15 // When the timer "ticks", we execute the function

16 i f (this.time <= 0){

17 this.function_to_execute ();

18 i f (this.one_shot){

19 // If this timer is a one -shot , we disable it

20 this.active = False;

21 }

22 // We reset the timer differently , by adding the "set time" with a multiplier

23 // this.time is guaranteed to be negative or zero , by dividing by a negative number

24 // we have a positive multiplier

25 in t multiplier = ceil(this.time / -this.set_time);

26 this.time = this.time + (multiplier * this.set_time);

27 }

28 }

29 }

This second approach has an issue too: we will need to calculate the ceiling of a value, which may require a bit more

CPU time (although most modern CPUs don’t require more than a single cycle to do so).

Both approaches are valid and for longer timers even the “naive” approach is valid and fast. The choice is up to your

personal taste and sensibility.

15.7 Inbetweening

Inbetweening, also known as “tweening”, is a method that allows to “smear” a value over time, this is usually done

with animations, where you set the beginning and end position of a certain object, as well as the time the movement

should take, and let the program take care of the animation.

This is particularly useful in animating UI[g] objects, to give a more refined feel to the game.

Here we will present some simple tweenings that can be programmed, and explain them.

15 USEFUL CONTAINERS AND CLASSES 386



2D Game Development: From Zero To Hero

Let’s start with a linear tweening, usually the following function is used:

Listing 94: Linear Tweening

1 function linearTween( f l oat time , f l oat begin , f l oat change , f l oat duration) -> f l oat {

2 return change * (time / duration) + begin;

3 }

Let’s explain the variables used:

• time: The current time of the tween. This can be any unit (frames, seconds, steps, …), as long as it is the

same unit as the “duration” variable;

• begin: represents the beginning value of the property being inbetweened;

• change: represents the change between the beginning and destination value of the property;

• duration: represents the duration of the tween.

Note!

The measure (time / duration) represents the “percentage of completion” of the tween-

ing.

In some cases a Linear tweening is not enough, that’s where easing comes into play.

Before introducing easing let’s analyze the function again, if you try plugging in some data into the function, you

will find that there is always going to be:

(change in property) · (factor) + (beginning value)

So we can use our function substituting begin with 0 and change with 1 to calculate factor and have a code similar to

this one:

Listing 95: Example of a simple easing function

1 // We calculate the tweening factor

2 f l oat factor = linearTween(time , 0, 1, duration);

3 // Now we change the property we're tweening

4 object.property = property_original_value + (destination_value - property_original_value) *

factor;

With linear tweening, the function degenerates to time
duration , but now we can replace our linear tween with the

following function:

Listing 96: Ease-in

1 function easeIn( f l oat time , f l oat duration , f l oat power) -> f l oat {

15 USEFUL CONTAINERS AND CLASSES 387



2D Game Development: From Zero To Hero

2 return (time/duration) ^ power;

3 }

By changing the power parameter, we change the behaviour of the easing, making the movement slower at the

beginning and pick up the pace more and more, until the destination is reached. This is called a “ease-in”.

For an “ease-out”, where the animation starts fast and slows down towards the end, we use the following function

instead:

Listing 97: Ease-out

1 function easeOut( f l oat time , f l oat duration , f l oat power) -> f l oat {

2 return 1 - (1 - (time / duration)) ^ power;

3 }

With some calculations, and if statements on the time passed, you can combine the two and get an “ease-in-out”

function.

Listing 98: Ease-in-out

1 function easeInOut( f l oat time , f l oat duration , f l oat power) -> f l oat {

2 f l oat threshold = duration / 2;

3 i f (time <= threshold){

4 return easeIn(time , duration , power);

5 }else{

6 return easeOut(time ,duration , power);

7 }

8 }

Obviously these functions have an issue: they don’t clamp the value between 0 and 1, that will have to be done in

the movement function or by adding a check, or using some math, for instance using min(calculated_value, 1).

Listing 99: Clamping values

1 function clamp( f l oat value , f l oat min , f l oat max) -> f l oat {

2 // Clamps "value" so it is always between "min" and "max"

3 i f (value < min){

4 return min;

5 }

6 i f (value > max){

7 return max;

8 }

9 return value;

10 }

In that case, calling the clamping function with values 0 and 1 would solve the issue.

15 USEFUL CONTAINERS AND CLASSES 388



2D Game Development: From Zero To Hero

A think that many people tend to forget, but that is really important is that you can tween any property of any entity

or object in your game, for instance:

• The position of a UI item;

• The width of a health bar;

• The rotation of an on-screen map or compass;

• The colour of the sky while doing a day-to-night transition.

In short: any numeric value that can transition “smoothly” between two values in a certain amount of time can be

tweened.

15.7.1 Bouncing

Easing is a great way to make more “natural looking” transitions, but in nature nothing is absolutely precise: we

may want to overshoot a bit and correct it so it looks a bit like a “bounce”.

The idea behind this is the following: when around 80% of the time has passed, our property should have overshot

its maximum value by something between 10% and 20% (more would look unnatural). The remaining 20% of the

time will be used to “ease back” to the final value. This will give us the bouncy feeling we want.

Here is a quick example of a function that will help us create a bounce effect: the t variable represents the time of

the animation that has passed, with 0 being the beginning and 1 being the end of the animation itself.

Listing 100: A bouncy tween function

1 function bounce_tween( f l oat t) -> f l oat {

2 // This constant will allow us to overshoot the max value by around 10%

3 const f loat c = 1.70158;

4

5 return 1 + (c + 1) * (t - 1)^3 + c * (t - 1)^2;

6 }

15.8 Chaining

[This section is a work in progress and it will be completed as soon as possible]

15 USEFUL CONTAINERS AND CLASSES 389



2D Game Development: From Zero To Hero

16 Artificial Intelligence in Videogames

The question of whether a computer can think is no more interesting than the

question of whether a submarine can swim.

Edsger W. Dijkstra

In this part of the book we will take a look at some data structures and algorithms that will help you building your

game’s Artificial Intelligence.

16.1 Path Finding

Path Finding is that part of AI algorithms that takes care of getting from point A to point B, using the shortest way

possible and avoiding obstacles.

16.1.1 Representing our world

Before undertaking the concept of path finding algorithms, we need to decide in which way we should represent our

world to the AI we want to code. There are different ways to do it and here we will discuss some of the most used

ones.

16.1.1.1 2D Grids

The simplest way to represent a world to an AI is probably using 2D grids: we can represent the world using a

2-dimensional matrix, where every cell is a free space, an obstacle, a start or goal cell.

This representation works well with top-down tile-based 2D games (with tile-based or free movement).

Listing 101: Possible representation of a 2D grid

1 class Grid_2D (){

2 // Represents a 2D grid of "Tile" classes

3 Tile [][] grid = nul l ;

4 in t width = 0;

5 in t height = 0;

6

7 function constructor( in t rows , in t cols){

8 // Prepares the memory for the grid

9 grid = new Tile[rows][cols];

10 height = rows;

11 width = cols;

12 }

13

14 function getCell( in t row , in t col) -> Tile{

15 // Gets a cell from the 2D Grid

16 i f (row >= 0 AND row < height) AND (col >=0 AND col < width){

17 // We better check if we are inside the grid

18 return grid[row][col];

19 }else{

20 return nul l ;

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 390



2D Game Development: From Zero To Hero

21 }

22 }

23

24 function getAdjacentCells( in t row , in t col) -> Tile []{

25 /* Returns a list of cells adjacent the ones we give

26 REMEMBER: We index at 0 so the first row is 0, the last one is at

27 "height - 1", same goes for columns */

28 Tile[] toReturn = new Tile[] // We assume arrays can resize when necessary

29 i f (row >= 0 AND row < height) AND (col >=0 AND col < width){

30 // We better check if we are inside the grid

31 i f (row > 0){

32 // We are not on the first row , we can add the cell above

33 toReturn.append(getCell(row - 1, col));

34 }

35 i f (row < height - 1){

36 // We are not on the last row , we can add the cell below

37 toReturn.append(getCell(row + 1, col));

38 }

39 i f (col > 0){

40 // We are not on the first column , we can add the cell on the left

41 toReturn.append(getCell(row , col - 1));

42 }

43 i f (col < width - 1){

44 // We are not on the last column , we can add the cell on the right

45 toReturn.append(getCell(row , col + 1));

46 }

47 }

48 /* If the checks went well , toReturn will have

49 a list of the adjacent cells , if not it will be empty */

50 return toReturn;

51 }

52 }

Even though this is probably themost straightforward way to represent a world in many cases, most of the algorithms

used work on a graph structure instead of a 2D grid. It shouldn’t be too hard to adapt the algorithms presented here

to work with this structure.

16.1.1.2 Path nodes

A more flexible way to represent our world is using “Path nodes”, where each “path node” is represented by a node

in a graph.

This type of graph-based abstraction is the most used when teaching path finding algorithms like A* or Dijkstra.

You can see more about graphs in the dedicated section in the Data Structures section.

16.1.1.3 Navigation meshes

Navigation meshes are used to solve a problem that can arise when we try to represent our world using path nodes:

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 391



2D Game Development: From Zero To Hero

we can’t represent “safe areas” (where the AI-driven entity can cross) without using possibly thousands of path

nodes.

Navigation meshes are constituted by a collection of convex polygons (the meshes) that define the “safe areas”,

each mesh has no obstructions inside of itself, so the AI-driven entity can safely cross the entire mesh freely.

This abstraction allows to use A* and Dijkstra algorithms, but instead of trying to navigate a graph, you look for a

path between meshes (which are saved in a graph structure).

To make the abstraction easier to understand, let’s take a look at the following map.

Figure 326: Map we will create a navigation mesh on 8

The first step is to divide the map into convex polygons, in our case we will use rectangles.
8Jawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 392

https://adamatomic.itch.io/jawbreaker


2D Game Development: From Zero To Hero

Figure 327: Dividing the map into many convex polygons and labelling them 9

Now each rectangle is a node of our graph (and will have to be treated accordingly by the AI, knowing it can navigate

freely inside each rectangle), now we need to connect each node, following the limitations given by the walls.

Figure 328: Creating the graph 10

The graph will be look something like this, as a data structure:
9Jawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker
10Jawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 393

https://adamatomic.itch.io/jawbreaker
https://adamatomic.itch.io/jawbreaker


2D Game Development: From Zero To Hero

A C

B

K

J

D

E G

F

I

H

N

M

L

O

Figure 329: The final data structure

[This section is a work in progress and it will be completed as soon as possible]

16.1.2 Heuristics

In path finding there can be “heuristics” that are accounted for when you have to take a decision: in path finding an

heuristic h(x) is an estimated cost to travel from the current node to the goal node.

An heuristic is admissible if it never overestimates such cost: if it did, it wouldn’t guarantee that the algorithm would

find the best path to the goal node.

In this book we will present the most common heuristics used in game development.

16.1.2.1 Manhattan Distance heuristic

The Manhattan Distance heuristic doesn’t allow diagonal movement (allowing it would allow the heuristic to overes-

timate the cost), and for a 2D grid is formulated as follows:

h(x) = |start.x− goal.x|+ |start.y − goal.y|

Graphically:

2

3

0 1 2 3 4

0

1

2

3

4

Figure 330: Example of Manhattan distance

This means that if our character moves only left-right and up-down, the Manhattan distance won’t overestimate the

movement cost, making it admissible.

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 394



2D Game Development: From Zero To Hero

Listing 102: Example code calculating the Manhattan distance on a 2D grid

1 structure Tile{

2 integer x;

3 integer y;

4 }

5

6 function manhattan_distance(Tile start , Tile goal) -> in t {

7 return abs(start.x - goal.x) + abs(start.y - goal.y);

8 }

16.1.2.2 Euclidean Distance heuristic

Euclidean Distance works well when diagonal movement in a 2D grid is allowed, Euclidean distance is calculated

with the standard distance formula:

h(x) =
√
(start.x− end.x)2 + (start.y − end.y)2

0 1 2 3 4

0

1

2

3

4

Figure 331: Example of Euclidean Distance

Listing 103: Example code calculating the Euclidean distance on a 2D grid

1 structure Tile{

2 integer x;

3 integer y;

4 }

5

6 function euclidean_distance(Tile start , Tile goal) -> f l oat {

7 return square_root ((start.x - goal.x)^2 + (start.y - goal.y)^2);

8 }

Differently from the Manhattan distance, the Euclidean distance won’t overestimate the cost in any case, and it is

usable even if diagonal movement is not happening, but it will be more “computationally intensive” to calculate.

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 395



2D Game Development: From Zero To Hero

16.1.3 Algorithms

Before getting to the algorithms, we need to consider two supporting data structures that we will use:

• Open Set: a sorted data structure that contains the nodes that currently need to be considered. It should be

an heap or any kind of structure that can be quickly be sorted as we will have to often refer to the node/cel-

l/mesh with the lowest heuristic.

• Closed Set: a data structure that will contain all the nodes/meshes/cells that have already been considered

by the algorithm. This structure should be easily searchable (like a binary search tree), since we will often

need to see if a certain node/cell/mesh is part of this set.

We will reference this image when we check what path the algorithm will take:

0 1 2 3 4

0

1

2

3

4

Figure 332: Pathfinding Algorithms Reference Image

The shaded rows represent the indexes we’ll refer to when operating the algorithm.

In each algorithm there will be the path taken by its implementation, so we invite you to execute the algorithm’s

instructions by hand, taking account of the heuristics pre-calculated and shown in the images below.

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

Manhattan Distance Euclidean Distance

1 1 2 3

4

5

6

76

54

323

4

5 4 5

1 1 2 3

4.24

54.47

3.61

3.6122.24

3.16

4.12

2.24

3.16

3.16

4.124

Figure 333: Pathfinding Algorithms Heuristics Reference Image

16.1.3.1 A simple “Wandering” Algorithm

This is not a real “pathfinding” algorithm, asmuch as something that should give the impression of people “wandering

around”. This algorithm is really simple and can be summarized in 2 rules:

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 396



2D Game Development: From Zero To Hero

1. Choose one direction at random, if you can’t go that way continue your search clockwise;

2. You cannot go back, unless it’s the only direction available.

This is good when used on mazes, let’s try an example:

Figure 334: Simple wandering algorithm 1/2

In this case, our random choice is forwards, but that leads us to a wall, so we continue our search clockwise:

Figure 335: Simple wandering algorithm 2/2

After going clockwise once, we hit another wall, so we continue, this direction is good, but it would lead us backwards,

so we ignore it. The only direction possible is left.

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 397



2D Game Development: From Zero To Hero

This algorithm is far from perfect: if we build a very simple maze, we can break the algorithm:

EntranceExit

Figure 336: This maze breaks our wandering algorithm

If you calculate the probabilities, you can see that starting from the entrance, the AI has a 75% chance of going into

one of those alcoves and only a 25% chance of going forwards.

This means that an entity has only a 25%6 = 0.0244% chance of finishing the maze without ever turning left.

Not only that, but every time the entity exits an alcove, it has a 50% chance of turning either direction (turning

left means going forwards, going right means going backwards), which means that there is a 37.5% chance (75%

chance turning left and 50% turning right) that the entity will go back towards the entrance of our maze.

Let’s see a possible implementation of this algorithm.

Listing 104: Implementation of a simple wandering algorithm

1 const string [] DIRECTIONS = ["NORTH", "EAST", "SOUTH", "WEST"];

2

3 class AIEntity{

4 // 0=North , 1=East , ...

5 forward_direction_index = 0;

6 current_cell = (1,0);

7 // ...

8 function get_adjacent_cell(Cell cell , string direction) -> Cell{

9 // Returns the adjacent cell in said direction

10 cell_copy = cell.copy();

11 i f (direction == "NORTH"){

12 cell_copy.y -= 1;

13 }

14 i f (direction == "SOUTH"){

15 cell_copy.y += 1;

16 }

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 398



2D Game Development: From Zero To Hero

17 i f (direction == "WEST"){

18 cell_copy.x -= 1;

19 }

20 i f (direction == "EAST"){

21 cell_copy.x += 1;

22 }

23 return cell_copy;

24 }

25

26 function is_valid(Cell cell) -> bool{

27 /* Returns true if the cell is valid , aka

28 * does not have a wall and does not go backwards */

29 i f (cell.is_wall ()){

30 // The cell is a wall

31 return False;

32 }

33 i f (cell == get_adjacent_cell(current_cell , DIRECTIONS [( forward_direction_index + 2) %

4])){

34 // We're going backwards , we don't want that

35 return False;

36 }

37 // In all other cases , it's valid

38 return True;

39 }

40

41 function update( f l oat dt){

42 // ...

43 // Choose a random direction

44 string chosen_direction = random_choice(DIRECTIONS);

45 in t i = 0;

46 Cell next_cell = get_adjacent_cell(current_cell , chosen_direction);

47 while (not is_valid(next_cell) and i!=4){

48 chosen_direction = DIRECTIONS [( DIRECTIONS.indexOf(chosen_direction) + 1) % 4];

49 next_cell = get_adjacent_cell(current_cell , chosen_direction);

50 i = i + 1;

51 }

52 i f (i == 4){

53 // We exhausted the possibilities , go backwards

54 chosen_direction = DIRECTIONS [( forward_direction_index + 2) % 4];

55 next_cell = get_adjacent_cell(current_cell , chosen_direction);

56 }

57 // Move

58 move_to(next_cell);

59 }

60 }

16.1.3.2 A slightly better “Wandering” algorithm

As we have seen, the previous wandering algorithm has a very heavy bias, let’s plan for another algorithm that

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 399



2D Game Development: From Zero To Hero

works a bit better and has a lower bias.

1. Check for all valid directions around you.

2. If no valid direction is found, go back.

3. If at least one valid direction is found, choose a random one between the valid directions found.

This algorithm relies on the fact that randomly selecting an item from a list containing a single item will return that

single item in 100% of the cases.

Let’s see a code implementation of such algorithm.

Listing 105: Implementation of a better wandering algorithm

1 const string [] DIRECTIONS = ["NORTH", "EAST", "SOUTH", "WEST"];

2

3 class AIEntity{

4 // 0=North , 1=East , ...

5 forward_direction_index = 0;

6 current_cell = (1,0);

7 // ...

8 function get_adjacent_cell(Cell cell , string direction) -> Cell{

9 // Returns the adjacent cell in said direction

10 cell_copy = cell.copy();

11 i f (direction == "NORTH"){

12 cell_copy.y -= 1;

13 }

14 i f (direction == "SOUTH"){

15 cell_copy.y += 1;

16 }

17 i f (direction == "WEST"){

18 cell_copy.x -= 1;

19 }

20 i f (direction == "EAST"){

21 cell_copy.x += 1;

22 }

23 return cell_copy;

24 }

25

26 function is_valid(Cell cell) -> bool{

27 /* Returns true if the cell is valid , aka

28 * does not have a wall and does not go backwards */

29 i f (cell.is_wall ()){

30 // The cell is a wall

31 return False;

32 }

33 i f (cell == get_adjacent_cell(current_cell , DIRECTIONS [( forward_direction_index + 2) %

4])){

34 // We're going backwards , we don't want that

35 return False;

36 }

37 // In all other cases , it's valid

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 400



2D Game Development: From Zero To Hero

38 return True;

39 }

40

41 function get_available_directions(Cell cell) -> string []{

42 /* Returns a list of available directions */

43 string [] result = [];

44 for (direction in DIRECTIONS){

45 i f (is_valid(get_adjacent_cell(cell , direction))){

46 result.append(direction);

47 }

48 }

49 return result;

50 }

51

52 function update( f l oat dt){

53 // ...

54 // Get a list of the available directions

55 string [] available_directions = get_available_directions(current_cell);

56 string chosen_direction = "NORTH"; // Just a default

57 i f (available_directions.is_empty ()){

58 // No directions are available , let's go back

59 chosen_direction = DIRECTIONS [( forward_direction_index + 2) % 4];

60 }else{

61 // Choose a random direction among the available ones

62 chosen_direction = random_choice(available_directions);

63 }

64 // Move

65 next_cell = get_adjacent_cell(current_cell , chosen_direction);

66 move_to(next_cell);

67 }

68 }

This algorithm chooses between all available directions with the same probability, and has a minor bias towards

going to the maze entrance.

16.1.3.3 The Greedy “Best First” Algorithm

This is a greedy algorithm[g] that searches the “local best” (what is best in a certain moment, without planning future

decisions) that makes use of heuristics.

For each of the neighbouring cells/meshes/nodes that have not been explored yet, the algorithm will take the one

that has the lowest heuristic cost. Since this algorithm doesn’t make any planning, this can lead to results that are

not optimal, usually translating in entities hugging walls to reach their goal, as well as taking longer paths.

In this algorithm we will use a “Node” structure composed as follows:

Listing 106: The node structure used in the greedy ”Best First” algorithm

1 structure Node{

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 401



2D Game Development: From Zero To Hero

2 Node parent; // This will be used to build the path

3 f l oat h; // The h(x) value for the node

4 }

Let’s look at the algorithm itself:

Listing 107: The greedy ”Best First” algorithm

1 // We bootstrap the variables

2 currentNode = start;

3 add currentNode to closedSet; // This will avoid re -analizing this node

4 do{

5 for (each Node n adjacent to currentNode){

6 i f (closedSet contains n){

7 // We already analyzed this node , continue to next n

8 skip the node n;

9 }else{

10 n.parent = currentNode;

11 i f (openSet does not contain n){

12 compute n.h; // Computes the value of n's h(x)

13 add n to openSet;

14 }

15 }

16 }

17 i f (openSet i s empty){

18 // We exhausted all the possibilities

19 break do loop;

20 }

21 // Select a new "currentNode"

22 currentNode = Node with lowest h inside the openSet;

23 remove currentNode from openSet;

24 add currentNode to closedSet;

25 } unt i l (currentNode == end)

26

27 i f (currentNode == end){

28 /* We reached the end and solved the path , we need to do a stack

29 reversal to find the path */

30 Stack finalPath;

31 Node n = end;

32 while (n i s not nu l l ){

33 add n to finalPath;

34 n = n.parent; // We use "parent" to run the found path backwards

35 }

36 }else{

37 // We cannot find a path between "start" and "end"

38 // ... Behave accordingly

39 }

An interesting idea to optimize this algorithm and avoid the final “stack reversal” would be to find the path starting

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 402



2D Game Development: From Zero To Hero

from the end node, towards the starting node.

In the image below we can see the path taken by the algorithm, and how it is not the most optimal path.

0 1 2 3 4

0

1

2

3

4

Figure 337: The path taken by the greedy “Best First” algorithm

16.1.3.4 The Dijkstra Algorithm

The idea behind the Dijkstra algorithm is having a “cost” component that expresses the cost that has to be incurred

when traveling from the start node to the current node. This will allow our previous algorithm to evolve and take the

shortest path possible.

To be able to keep track of such “path-cost” component, we will use a different “Node” structure from the one used

in the greedy “best-first” algorithm:

Listing 108: The node structure used in the Dijkstra Algorithm

1 structure Node{

2 Node parent; // This will be used to build the path

3 f l oat g; // The path cost value for the node

4 }

The idea behind the whole algorithm is that “if we find a quicker way to get from the start node to the current node,

we should take it”.

Let’s take a look at the algorithm:

Listing 109: The Dijkstra Algorithm

1 currentNode = start;

2 add currentNode to closedSet;

3 do{

4 for (each Node n adjacent to currentNode){

5 i f (closedSet contains n){

6 skip the node n;

7 }else i f (openSet contains n){ // Check if this path is better

8 compute new_g (path cost value);

9 i f (new_g < n.g){

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 403



2D Game Development: From Zero To Hero

10 // We found a better path from start to currentNode

11 n.parent = currentNode;

12 n.g = new_g;

13 }

14 }else{

15 n.parent = currentNode;

16 compute n.g;

17 add n to openSet;

18 }

19 }

20

21 i f (openSet i s empty){

22 // We exhausted all possibilities

23 break loop;

24 }

25 currentNode = Node with the lowest g in the openSet;

26 remove currentNode from openSet;

27 add currentNode to closedSet;

28 } unt i l (currentNode == end)

29

30 // Reconstruct the path like in the greedy "best -first" algorithm

As with the greedy “best-first” algorithm we can optimize the “stack reversal” stage by starting from the end node.

Below we can see the path taken by the algorithm:

0 1 2 3 4

0

1

2

3

4

Figure 338: The path taken by the Dijkstra Algorithm

16.1.3.5 The A* Algorithm

The A* Algorithm joins the “path-cost” idea with the heuristic to have a more efficient path-finding algorithm.

The algorithm is really similar to Dijkstra, but it orders the open set by a new formula f , that is calculated as follows:

f(x) = g(x) + h(x)

Where g(x) is our path cost and h(x) is the heuristic we selected.

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 404



2D Game Development: From Zero To Hero

Let’s see the code:

Listing 110: The A* Algorithm

1 currentNode = start;

2 add currentNode to closedSet;

3 do{

4 for (each Node n adjacent to currentNode){

5 i f (closedSet contains n){

6 skip the node n;

7 }else i f (openSet contains n){ // Check if this path is better

8 compute new_g (path cost value);

9 i f (new_g < n.g){

10 // We found a better path from start to currentNode

11 n.parent = currentNode;

12 n.g = new_g;

13 n.f = n.g + n.h;

14 }

15 }else{

16 n.parent = currentNode;

17 compute n.g;

18 compute n.h;

19 n.f = n.g + n.h;

20 add n to openSet;

21 }

22 }

23

24 i f (openSet i s empty){

25 // We exhausted all possibilities

26 break loop;

27 }

28 currentNode = Node with the lowest f in the openSet;

29 remove currentNode from openSet;

30 add currentNode to closedSet;

31 } unt i l (currentNode == end)

32

33 // Reconstruct the path like in the greedy "best -first" algorithm

The path taken by the A* Algorithm is exactly the same as the one taken by the Dijkstra Algorithm, but the heuristic

helps the A* Algorithm in visiting less nodes than its counterpart.

16.1.3.5.1 Dijkstra Algorithm as a special case of the A* Algorithm

The Dijkstra Algorithm can be implemented with the same code as the A* Algorithm, just by keeping the heuristic

cost h(x) = 0.

The absence of the heuristics (which depends on the goal node) leads the Dijkstra Algorithm to visit more nodes,

but it can be useful in case there are many valid goal nodes and we don’t know which one is the closest.

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 405



2D Game Development: From Zero To Hero

16.2 Finite state machines

We can use finite state machines, introduced previously, to define some quite complex Artificial Intelligence schemes.

Patrolling

Alert

Attack

Enemy Dead

Lost Sight of Enemy
Noise Heard

Partial enemy sighting

No sighting
within 10 seconds

Enemy Found

Call Reinforcements

Only person patrolling?
Reinforcements

Called

Figure 339: Finite state machine representing an enemy AI

We can see in the previous image how we can use conditions as transition between different “states of mind” of our

enemy AI, making it act differently.

The enemy will be patrolling by default, but if the player is heard or seen the enemy will enter its “alert state”, where

it will either call for backup or actively search for the player. As soon as the player is found, the enemy will attack

and try to kill the player.

If you want a refresher on finite state machines, check the finite state machine section some chapters earlier.

16.3 Decision Trees

Decision trees are a structure used to define the decision process of an AI-controlled entity.

Condition?

Condition? Condition?

Action ActionActionAction

Figure 340: Example of a decision tree

Decision trees are always evaluated from root to leaf, and each node represents a condition that can be more or

less complex. In the image above we used a simple “binary tree” to represent conditions that can be answered with

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 406



2D Game Development: From Zero To Hero

“yes” or “no”.

[This section is a work in progress and it will be completed as soon as possible]

16.4 Behaviour Trees

Similar in structure to Decision Trees, Behaviour Trees are different in their evaluation.

Condition?

Condition? Condition?

Action ActionActionAction

Figure 341: Example of a behaviour tree

First of all, the child nodes of a behaviour tree are ordered by priority, if a child node has all of its conditions met its

internal state is changed to “running” and the chosen “behaviour” is returned to the caller.

The next evaluation, the tree is again evaluated, in order, if a “running” node is met, such behaviour will continue

to persist for the current frame. In case a “higher priority” behaviour is met, that one behaviour will start running

(instead of the behaviour chosen earlier).

In case a node doesn’t have all of its conditions met, the algorithm will return to the parent node, which will chose

the next node, in priority order.

[This section is a work in progress and it will be completed as soon as possible]

16.5 Tips and tricks

As with every activity in video game development, the development of AI has some tricks that can make a character

seem “smarter” than they actually are.

Again, this involves a fair bit of deception.

16.5.1 “Jump when the player shoots”

A really simple pattern that can be applied to boss fights in 2D games is making the boss jump when the player shoots

a projectile: this, in conjunction with the normal boss patterns, makes the boss appear “aware” of the projectiles

and is actually trying to dodge them.

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 407



2D Game Development: From Zero To Hero

This pattern has an obvious drawback: the player can ensure that they hit the boss by jumping themselves before

shooting. This can be mitigated by adding a degree of randomness to the boss jumping.

To develop this kind of AI pattern, the boss entity needs to be aware of what the player is doing. This seems the

ideal situation for the Observer Design Pattern.

Listing 111: Example code for ”jump when player shoots” AI pattern

1 class Player{

2 // ...

3 function registerShootingObserver( function callback){

4 // Function used to register an observer that will be called when the

5 // player shoots a projectile.

6 }

7 }

8

9 class JumpingBoss{

10 // A boss that jumps when the player shoots. Sometimes.

11

12 boolean player_shot = False;

13 boolean on_ground = False;

14 f l oat y_velocity = 0.0;

15

16 constructor( f l oat x, f l oat y, Player player){

17 // ...

18 player.registerShootingObserver(this.setPlayerShot);

19 // ...

20 }

21

22 function setPlayerShot (){

23 // Sets a state that tells the AI that the player shot a bullet

24 this.player_shot = True;

25 }

26

27 function jump(){

28 // Sets the boss velocity to -10, making it jump

29 i f (this.on_ground){

30 this.y_velocity = -10;

31 }

32 }

33

34 function update( f l oat dt){

35 // ...

36 i f (this.player_shot i s True){

37 i f (random_int (1, 5) == 1){

38 // Jump only 20% of the times the player shoots

39 this.jump();

40 }

41 }

42 // We reset player_shot to false , if we didn't the boss would jump

43 // a lot more often than 20% of the time

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 408



2D Game Development: From Zero To Hero

44 this.player_shot = False;

45 // ...

46 }

47 }

16.5.2 Distance-based patterns

You can influence the AI of an enemy by their distance from the player’s position. In the following sections we will

use “Boss” to indicate the enemy, for simplicity.

16.5.2.1 “Ranged pattern”

The first pattern in the class of “distance-based” ones will be called the “ranged pattern”. That is because this

pattern fits well with bosses that use ranged attacks. Since in the real world ranged units have issues with dealing

with melee attacks, they will try to “keep their distance”.

The main idea is that every frame, the boss will calculate how far the player is (in a AABB fashion, to save on

resources): if the player is too close, the boss will try to increase their distance to the player. This will require

calculating the direction the boss will have to move and some state variables to tie the thing together.

Listing 112: Example code for a ”ranged” AI pattern

1 class Boss{

2 constructor(Player player){

3 this.player = player;

4 this.player_too_close = False;

5 this.base_movement_velocity = 10;

6 this.too_close_space = 20;

7 this.velocity = Vector2D ();

8 this.position = Vector2D ();

9 }

10

11 function update( f l oat dt){

12 // ...

13 i f (abs(this.player.position.x - this.position.x) < this.too_close_space){

14 i f (abs(this.player.position.y - this.position.y) < this.too_close_space){

15 // The player is too close

16 i f (rand_int (1,5) == 1){

17 // Add a bit of randomization

18 this.player_too_close = True;

19 }

20 }

21 }

22 // We're using a variable to preserve the "too close" state between frames

23 i f (this.player_too_close){

24 // The player is too close , make some distance

25 Vector2D distance = this.position - this.player.position;

26 // Make it a direction

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 409



2D Game Development: From Zero To Hero

27 Vector2D direction = distance.normalize ();

28 // This is the direction the boss should go now , transfer it to velocity

29 this.velocity = direction * this.base_movement_velocity;

30 }

31 // ...

32 // The boss and player now have moved , let's see if they're far enough

33 // ...

34 i f (abs(this.player.position.x - this.position.x) > this.too_close_space){

35 i f (abs(this.player.position.y - this.position.y) > this.too_close_space){

36 // The player is far enough now

37 this.player_too_close = False;

38 }

39 }

40 }

41 }

16.5.2.2 “Melee pattern”

The second pattern will be called “melee pattern” and will work exactly the opposite of the “ranged pattern”: if the

player is too far, the boss will try to close in. This is ideal when the player uses melee weapons (or the player uses

ranged weapons).

The way this will be implemented is the same as the previous pattern, just in reverse.

Listing 113: Example code for a ”melee” AI pattern

1 class Boss{

2 constructor(Player player){

3 this.player = player;

4 this.player_too_far = False;

5 this.base_movement_velocity = 10;

6 this.too_far_space = 30;

7 this.velocity = Vector2D ();

8 this.position = Vector2D ();

9 }

10

11 function update( f l oat dt){

12 // ...

13 i f (abs(this.player.position.x - this.position.x) > this.too_far_space){

14 i f (abs(this.player.position.y - this.position.y) > this.too_far_space){

15 // The player is too close

16 i f (rand_int (1,5) == 1){

17 // Add a bit of randomization

18 this.player_too_far = True;

19 }

20 }

21 }

22 // We're using a variable to preserve the "too far" state between frames

23 i f (this.player_too_far){

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 410



2D Game Development: From Zero To Hero

24 // The player is too far , close in

25 Vector2D distance = this.player.position - this.position;

26 // Make it a direction

27 Vector2D direction = distance.normalize ();

28 // This is the direction the boss should go now , transfer it to velocity

29 this.velocity = direction * this.base_movement_velocity;

30 }

31 // ...

32 // The boss and player now have moved , let's see if they're close enough

33 // ...

34 i f (abs(this.player.position.x - this.position.x) < this.too_far_space){

35 i f (abs(this.player.position.y - this.position.y) < this.too_far_space){

36 // The player is close enough now

37 this.player_too_far = False;

38 }

39 }

40 }

41 }

16 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 411



2D Game Development: From Zero To Hero

17 Other Useful Algorithms

Fancy algorithms are slow when n is small, and n is usually small.

Rob Pike

17.1 World Generation

17.1.1 Midpoint Displacement Algorithm

As the name implies, this algorithm entails recursively taking the midpoint between two extremes and “displace” it.

Let’s see how it works first. We have a completely flat terrain:

Figure 342: How the Midpoint Displacement Algorithm Works (1/4)

Then we take the midpoint between the two extremes and move it (up or down) by a random amount (between two

sensible extremes):

Figure 343: How the Midpoint Displacement Algorithm Works (2/4)

In this case we moved it up by a certain measure, now we take the two midpoints on the left and right sides of the

previous midpoint, and displace them too:

17 OTHER USEFUL ALGORITHMS 412



2D Game Development: From Zero To Hero

Figure 344: How the Midpoint Displacement Algorithm Works (3/4)

Then we take the midpoints between the segments we created, and displace them again:

Figure 345: How the Midpoint Displacement Algorithm Works (4/4)

Each displacement is usually done by a lower amount of the previous ones, so that the first displacements give a

“general shape” of the terrain, while the ones further down the line are going to give “detail” to our terrain.

The algorithm terminates when we reached a pre-defined number of subdivisions, sometimes called “octaves”. In

the previous example, we have 4 octaves.

Let’s take a look at a possible implementation of the midpoint displacement algorithm:

Listing 114: Example implementation of the midpoint displacement algorithm

1 in t MIN = 0;

2 in t MAX = 100;

3 in t OCTAVES = 5;

4

5 // This will contain the "heights" of our terrain

6 f l oat [] terrain = new f l oat [32];

7

17 OTHER USEFUL ALGORITHMS 413



2D Game Development: From Zero To Hero

8 // We start by deciding the start and end "heights" of our terrain

9 terrain [0] = random_float(MIN , MAX);

10 terrain [31] = random_float(MIN , MAX);

11 // We interpolate all the missing values

12 interpolate(terrain , 0, 31);

13

14

15 function midpoint_displacement( in t begin , in t end , in t octave){

16 // Get the midpoint

17 f l oat midpoint = floor((end - begin) / 2);

18 // Get the midpoint value

19 f l oat value = (abs(terrain[end] - terrain[begin])) / 2;

20 // Get the possible displacement

21 f l oat displacement = MAX / octave;

22 // Displace by a random amount

23 value += random_float(-displacement , displacement);

24 // Apply the value

25 terrain[midpoint] = value;

26 // Interpolate the values between begin and midpoint

27 for (each i between "begin + 1" and "midpoint - 1"){

28 terrain[i] = interpolate(terrain , begin , midpoint);

29 }

30 // Interpolate the values between midpoint and the end

31 for (each i between "begin + 1" and "midpoint - 1"){

32 terrain[i] = interpolate(terrain , midpoint , end);

33 }

34 // Recursion on the subtree

35 i f (octave < OCTAVES){

36 // Recur left

37 midpoint_displacement(begin , midpoint , octave + 1);

38 // Recur right

39 midpoint_displacement(midpoint , end , octave + 1);

40 }

41 }

Note!

This algorithm can be extended to create 2D height-maps (which can be used in turn to

create 3D ground) and noise textures quite easily, but it also presents some artifacts

that can be noticeable. The diamond-square algorithm solves this issue.

17.1.2 Diamond-Square Algorithm

The diamond-square algorithm is an evolution in 2D of the midpoint displacement algorithm (so far, we just changed

one value, in one dimension).

The algorithm iteratively repeats two steps:

17 OTHER USEFUL ALGORITHMS 414



2D Game Development: From Zero To Hero

• a diamond stepwhere you find all the squares, take the midpoint and set it as the average of the four corners,

plus a random displacement;

• a square stepwhere you find all the diamonds, take the midpoint and set it as the average of the four corners,

plus a random displacement.

Let’s see how it works.

First of all, we bootstrap our square with arbitrary values at the four corners, this will be our starting point.

Figure 346: How the diamond-square algorithm works (1/5)

Now we perform the first “diamond step”: we have only one big square, with 4 corners, we identify its center and

set its value to the average of the corners and apply a random displacement.

17 OTHER USEFUL ALGORITHMS 415



2D Game Development: From Zero To Hero

Figure 347: How the diamond-square algorithm works (2/5)

Now we can perform our first “square step”: we have 4 diamonds, we identify their centres (in red) and set them to

the average of their neighbours, plus a random displacement.

Figure 348: How the diamond-square algorithm works (3/5)

Now we can iterate with another “diamond step” on the four new smaller squares we have, get their centers and

again average and displace.

17 OTHER USEFUL ALGORITHMS 416



2D Game Development: From Zero To Hero

Figure 349: How the diamond-square algorithm works (4/5)

As the last step, for this 5x5 grid, we perform another “square step”, finding 12 smaller diamonds, and again getting

the average of the corners and apply a displacement.

Figure 350: How the diamond-square algorithm works (5/5)

[This section is a work in progress and it will be completed as soon as possible]

17.1.3 Maze Generation

Maze generation is the base of a great majority of dungeon generation systems, you can create a maze, carve out

a few rooms, put an entrance and an exit and you have a nice quick dungeon!

17 OTHER USEFUL ALGORITHMS 417



2D Game Development: From Zero To Hero

There are many ideas that can be used to generate a maze, some are based on a prepared map that gets refined

into a maze, some other are based on walls instead of tiles, here we will see some of the many algorithms that exist.

17.1.3.1 Randomized Depth-First Search (Recursive Backtracker)

The Depth-First Search (DFS) algorithm is known in the world of tree and graph structure as a traversal algorithm.

We can use a randomized DFS algorithm as a simple maze-generation algorithm.

The Randomized DFS Algorithm is usually implemented using the backtracking technique and a recursive routine:

such algorithm is called “Recursive Backtracker”.

The idea behind the algorithm is, starting from a defined “cell”, to explore the grid randomly by choosing an available

direction, digging a path.

Figure 351: How the recursive backtracker algorithm works (1)

When the algorithm detects that there is no available direction that means that the “head” of our digger is hitting

against already explored cells or the map borders.

Figure 352: How the recursive backtracker algorithm works (2)

In such case, we “backtrack” until we find a cell with at least one available direction and continue our exploration.

17 OTHER USEFUL ALGORITHMS 418



2D Game Development: From Zero To Hero

Figure 353: How the recursive backtracker algorithm works (3)

This “digging and backtracking” keeps going until there are no other cells that have not been visited.

Figure 354: How the recursive backtracker algorithm works (4)

In some versions of the algorithm we need to also keep track of cells that will be used as “walls”, so the actual

implementation varies.

Listing 115: Example implementation of recursive backtracker maze generation

1 class Maze{

2 constructor(w, h){

3 /*

4 * A simple constructor

5 */

6 in t width = w; // Needs to be an odd number

7 in t height = h; // Needs to be an odd number

8

9 // Create a 2D matrix containing the maze data

10 // False = Path , True = Wall

11 boolean[] cells = [width x height] 2D array filled with "True";

12 }

13

14 function make_path(x, y){

15 /*

16 * Given a cell coordinates , sets the cell as a path

17 OTHER USEFUL ALGORITHMS 419



2D Game Development: From Zero To Hero

17 */

18 cells[y][x] = False;

19 }

20

21 function make_wall(x, y){

22 /*

23 * Given a cell coordinates , sets the cell as a wall

24 */

25 cells[y][x] = True;

26 }

27

28 function is_wall(x, y) -> boolean{

29 /*

30 * Returns true if the given cell coordinates are inside the maze

31 * boundaries and if the selected cell is a wall

32 */

33 // Let's check if the coordinates are within the maze grid

34 i f (x >= 0) AND (x < width) AND (y >= 0) AND (y < height){

35 // if they are , then we can check if the cell is a wall

36 return cells[y][x];

37 }else{

38 // If we're outside the maze boundaries , we return false

39 return False;

40 }

41 }

42

43 function draw_maze(x, y){

44 /*

45 * Draws a maze using the recursive backtracker algorithm and

46 * system stack recursion.

47 *

48 * This version will dig walls 2 cells at a time , thus leaving some cells

49 * acting as "walls" instead of having a more complex structure.

50 */

51 // We dig a path in the current cell

52 make_path(x, y);

53 // We create a list of available directions (x and y)

54 Vector2D [] directions = new Array(

55 Vector2D(1, 0),

56 Vector2D(-1, 0),

57 Vector2D(0, 1),

58 Vector2D(0, -1)

59 );

60 // And we shuffle them

61 shuffle_in_place(directions);

62

63 // While there is at least one direction available

64 while not (directions.is_empty ()){

65 // We take the last item in our directions list (which is random)

66 direction_to_try = directions.pop();

17 OTHER USEFUL ALGORITHMS 420



2D Game Development: From Zero To Hero

67

68 // Calculate the new node's coordinates using the chosen direction.

69 // We are doubling the movement in each direction , so some cells

70 // can act as walls

71 in t next_x = x + (direction_to_try.x * 2);

72 in t next_y = y + (direction_to_try.y * 2);

73

74 // If the node we found is a wall , it means we didn't visit it

75 // (and it's inside our maze boundaries)

76 i f (is_wall(next_x , next_y)){

77 // We have found a new node to dig towards

78

79 // Since we are moving 2 cells at a time , we need to carve

80 // the cell that "links" our "current node" and the "next node"

81 in t link_cell_x = x + direction_to_try.x;

82 in t link_cell_y = y + direction_to_try.y;

83 make_path(link_cell_x , link_cell_y);

84

85 // Repeat the carving process with the new coordinates

86 draw_maze(next_x , next_y);

87 }

88 }

89 // If all available directions are exhausted , we return (thus popping

90 // one layer from the system stack: we go back one step)

91 // If we are back at the starting cell , the algorithm terminates

92 return;

93 }

94 }

This algorithm can involve a big deal of recursion, which can lead to a stack overflow[g] in your program, stopping

the algorithm from working and your game in its entirety. It is possible to work around this issue by using an explicit

stack, instead of using the call stack.

Listing 116: Example implementation of recursive backtracker with an explicit stack

1 class Maze{

2 constructor(w, h){

3 /*

4 * A simple constructor

5 */

6 in t width = w; // Needs to be an odd number

7 in t height = h; // Needs to be an odd number

8

9 // Create a 2D matrix containing the maze data

10 // False = Path , True = Wall

11 boolean[] cells = [width x height] 2D array filled with "True";

12 Vector2D [] carved_passages = new Vector2D [];

13 }

14

15 // ...

17 OTHER USEFUL ALGORITHMS 421



2D Game Development: From Zero To Hero

16 // Same as the previous example

17 // ...

18

19 function draw_maze(x, y){

20 /*

21 * Draws a maze using the recursive backtracker algorithm and

22 * system stack recursion.

23 *

24 * This version will dig walls 2 cells at a time , thus leaving some cells

25 * acting as "walls" instead of having a more complex structure.

26 */

27 // First thing , we push our cell into our "carved passages",

28 // this will simulate the system stack

29 carved_passages.push(new Vector2D(x,y));

30 // When the "carved_passages" array is empty , we are back at the start of the maze

31 in t stored_x = x

32 in t stored_y = y

33 in t next_x = nul l ;

34 in t next_y = nul l ;

35 while (not carved_passages.is_empty ()){

36 // We dig a path in the current cell

37 make_path(stored_x , stored_y);

38 // We create a list of available directions (x and y)

39 Vector2D [] directions = new Array(

40 Vector2D(1, 0),

41 Vector2D(-1, 0),

42 Vector2D(0, 1),

43 Vector2D(0, -1)

44 );

45 // And we shuffle them

46 shuffle_in_place(directions);

47

48 // While there is at least one direction available

49 while not (directions.is_empty ()){

50 // We take the last item in our directions list (which is random)

51 direction_to_try = directions.pop();

52

53 // Calculate the new node's coordinates using the chosen direction.

54 // We are doubling the movement in each direction , so some cells

55 // can act as walls

56 in t next_x = stored_x + (direction_to_try.x * 2);

57 in t next_y = stored_y + (direction_to_try.y * 2);

58

59 // If the node we found is a wall , it means we didn't visit it

60 // (and it's inside our maze boundaries)

61 i f (is_wall(next_x , next_y)){

62 // We have found a new node to dig towards

63

64 // Since we are moving 2 cells at a time , we need to carve

65 // the cell that "links" our "current node" and the "next node"

17 OTHER USEFUL ALGORITHMS 422



2D Game Development: From Zero To Hero

66 in t link_cell_x = stored_x + direction_to_try.x;

67 in t link_cell_y = stored_y + direction_to_try.y;

68 make_path(link_cell_x , link_cell_y);

69

70 // Repeat the carving process with the new coordinates

71 // we do this by pushing into the stack

72 carved_passages.push(new Vector2D(next_x , next_y));

73 }

74 }

75 // If all available directions are exhausted , we pop

76 // one layer from our stack: we go back one step

77 i f (directions.is_empty ()){

78 Vector2D popped_vector = carved_passages.pop();

79 stored_x = popped_vector.x;

80 stored_y = popped_vector.y;

81 }else{

82 // If not , we continue

83 stored_x = next_x;

84 stored_y = next_y;

85 }

86 }

87 }

88 }

This algorithm, being taken from a Depth-First search algorithm, is biased towards creating very long corridors.

17.1.3.2 Randomized Kruskal’s Algorithm

This algorithm is based on a randomized version of the minimum-spanning tree algorithm known as Kruskal’s algo-

rithm.

The algorithm needs the following data structures to work:

• One structure that contains all the “walls” of our maze, this can be a list

• One structure that allows for easy joining of disjoint sets, this will contain the cells

Initially all the cells are separated by walls, and each cell is its own set.

17 OTHER USEFUL ALGORITHMS 423



2D Game Development: From Zero To Hero

Figure 355: How the Randomized Kruskal’s Algorithm Works (1/6)

Now we select a random wall from our list, if the cells separated by such wall are part of different sets, we delete

the wall and join the cells into a single set.

Figure 356: How the Randomized Kruskal’s Algorithm Works (2/6)

The “different sets” check allows us to avoid having loops in our maze (and also deleting all the walls, in some cases).

Next we select another wall, check if the cells divided by the wall are from different sets and join them.

Figure 357: How the Randomized Kruskal’s Algorithm Works (3/6)

This doesn’t look much like a maze yet, but by uniting the cells we can start seeing some short paths forming in our

maze.

17 OTHER USEFUL ALGORITHMS 424



2D Game Development: From Zero To Hero

Figure 358: How the Randomized Kruskal’s Algorithm Works (4/6)

The black cells are starting to develop a path, as stated earlier. As the sets get bigger, there will be less walls we

can “break down” to join our sets.

Figure 359: How the Randomized Kruskal’s Algorithm Works (5/6)

When there is only one set left, our maze is complete.

Figure 360: How the Randomized Kruskal’s Algorithm Works (6/6)

Being based on a minimum-spanning tree algorithm, this algorithm is biased towards creating a large number of

short dead ends.

Now let’s see an example implementation of the Randomized Kruskal’s Algorithm:

17 OTHER USEFUL ALGORITHMS 425



2D Game Development: From Zero To Hero

[This section is a work in progress and it will be completed as soon as possible]

17.1.3.3 Recursive Division Algorithm

This algorithm is a bit similar to the recursive backtracker, but instead of focusing on passages, this algorithm

focuses on walls: the idea is recursively dividing the space available with a horizontal or vertical wall which has a

“hole” placed randomly.

This algorithm can give better results when the choice between “vertical” and “horizontal” walls is biased by the

sizes of the sub-areas given by the last division.

Let’s see how the algorithm works.

Starting from an empty maze, with no walls, we decide the direction (horizontal or vertical) of our first wall and add

it, in a random position, making sure that there’s an opening in such wall.

Figure 361: How the Recursive Division Algorithm Works (1/6)

We select one of the two sub-areas we find, recursively and we add another wall in a random position and with a

random direction.

Figure 362: How the Recursive Division Algorithm Works (2/6)

We select one of the two sub-sub-area, and add another wall, with a random position and direction.

17 OTHER USEFUL ALGORITHMS 426



2D Game Development: From Zero To Hero

Figure 363: How the Recursive Division Algorithm Works (3/6)

We keep on diving each sub-area recursively, adding walls, until the sub-area had one of its 2 dimensions (horizontal

or vertical) equal to 1 cell.

Figure 364: How the Recursive Division Algorithm Works (4/6)

When that happens, we backtrack to one of the previous sub-sections and continue.

Figure 365: How the Recursive Division Algorithm Works (5/6)

This keeps going until the maze is complete.

17 OTHER USEFUL ALGORITHMS 427



2D Game Development: From Zero To Hero

Figure 366: How the Recursive Division Algorithm Works (6/6)

Although it’s one of the most efficient algorithms out there (considering that it can easily be converted to a multi-

threaded version), given its nature, this algorithm is naturally biased towards building long walls, which give the

maze a very “rectangle-like” feeling.

This bias is more noticeable with bigger mazes, like the following one.

Figure 367: The bias of Recursive Division Algorithm

Let’s see an example implementation of this algorithm:

[This section is a work in progress and it will be completed as soon as possible]

17.1.3.4 Binary Tree Algorithm

17 OTHER USEFUL ALGORITHMS 428



2D Game Development: From Zero To Hero

This is another very efficient “passage carver” algorithm: for each cell we carve a passage that either leads upwards

or leftwards (but never both).

Let’s see how the algorithm works: we start from the bottom-right cell of the maze (the last one).

Figure 368: How the Binary Tree Maze generation works (1/6)

Now we decide, randomly, to carve a passage either upwards or leftwards (we will not carve a passage that “creates

a hole in a wall”). In this case we go leftwards.

Figure 369: How the Binary Tree Maze generation works (2/6)

Now let’s go to the second-to-last cell…

Figure 370: How the Binary Tree Maze generation works (3/6)

17 OTHER USEFUL ALGORITHMS 429



2D Game Development: From Zero To Hero

And again, decide randomly to carve a passage either upwards or leftwards, this time we chose upwards.

Figure 371: How the Binary Tree Maze generation works (4/6)

Again we go to the “previous” cell and continue with our process, until we hit the left wall (which will force us to

carve a passage upwards) or the top wall (which will force us to go left); when we hit both the top and the left walls,

we stop.

Figure 372: How the Binary Tree Maze generation works (5/6)

Here is the result of the algorithm:

Figure 373: How the Binary Tree Maze generation works (6/6)

Given its deep roots into the computer science “Binary Tree” structure (where the root is the upper-left corner), this

17 OTHER USEFUL ALGORITHMS 430



2D Game Development: From Zero To Hero

algorithm shows only half of the cell types available in mazes: there are no crossroads and all dead ends will either

have a passage upwards or leftwards (but again, never both at the same time).

Let’s see an example implementation of the “binary tree algorithm”:

[This section is a work in progress and it will be completed as soon as possible]

17.1.3.5 Eller’s Algorithm

Eller’s algorithm is the most memory-efficient maze-generation algorithm known so far: you generate the maze

row-by-row, without needing to memorize the whole maze in memory while creating it.

To start, we decide the width and height of the maze, and create a single row, large as the width we want. Then we

set each cell to be its own “set”.

Figure 374: How Eller’s Maze Generation Algorithm Works (1/7)

Now we scroll through the cells and randomly join adjacent cells that are part of two different “sets”.

Figure 375: How Eller’s Maze Generation Algorithm Works (2/7)

After joining we create some “holes” in the bottom wall, making sure that each “set” has at least one hole to get to

the next row.

Figure 376: How Eller’s Maze Generation Algorithm Works (3/7)

After that we start creating the next row, connecting the cells that have a “hole” with the previous row and assigning

them the same set. In the picture the gray cells didn’t get a set assigned yet.

Figure 377: How Eller’s Maze Generation Algorithm Works (4/7)

After that we assign a new set to the remaining cells.

Figure 378: How Eller’s Maze Generation Algorithm Works (5/7)

17 OTHER USEFUL ALGORITHMS 431



2D Game Development: From Zero To Hero

At this point we just need to iterate, ignoring the previous row: we join adjacent cells that are not part of the same

“set” (we grayed out the previous row).

Figure 379: How Eller’s Maze Generation Algorithm Works (6/7)

Then we create “holes” for each set and prepare the next row. In case we want the maze to be wholly interconnected

then if the row is the last row, we can just join all the cells.

Figure 380: How Eller’s Maze Generation Algorithm Works (7/7)

Obviously we can repeat the iteration as many times as we want, and we get a maze as big as we want. This

algorithm has no obvious biases and is good for very efficient dungeon generation, if you add rooms, for instance.

Let’s see a possible implementation of this strange, but interesting algorithm:

[This section is a work in progress and it will be completed as soon as possible]

17.2 Dungeon Generation

[This section is a work in progress and it will be completed as soon as possible]

17.3 Noise Generation

“Noise” can be a very important part of game development: we can create textures with it, or even use it to generate

worlds. In this section we will take a look at how to create “noise” efficiently and with the desired result: from

completely randomized to more “natural looking” noise we can use to create maps.

17.3.1 Randomized Noise (Static)

The simplest kind of noise we can generate is also known as “static”, for each unit of our elaboration (it can be a

pixel, for instance), we generate a random number between two bounds.

Here is an example of random noise:

17 OTHER USEFUL ALGORITHMS 432



2D Game Development: From Zero To Hero

Figure 381: Example of Random Noise

We can create some “TV-like” static with a few lines of code, like the following:

Listing 117: Example implementation of randomized noise

1 in t WIDTH = 800;

2 in t HEIGHT = 600;

3 // We create an empty texture

4 Texture texture = Texture(WIDTH , HEIGHT);

5

6 // Now we iterate through each pixel of the texture

7 for (each row in texture){

8 for (each pixel in row){

9 // We create a random gray color (0 is black , 255 is white)

10 in t rand_gray_tone = random_int (0 ,255);

11 // Most colors are made of Red Green and Blue , by placing them at the

12 // same value , we get a tone of gray

13 Color rand_color = Color(rand_gray_tone , rand_gray_tone , rand_gray_tone);

14 pixel.setColor(rand_color);

15 }

16 }

17.3.2 Perlin Noise

[This section is a work in progress and it will be completed as soon as possible]

17 OTHER USEFUL ALGORITHMS 433



2D Game Development: From Zero To Hero

17.4 Animation

17.4.1 Skeleton animation

[This section is a work in progress and it will be completed as soon as possible]

17 OTHER USEFUL ALGORITHMS 434



2D Game Development: From Zero To Hero

18 Procedural Content Generation

Science is what we understand well enough to explain to a computer. Art is

everything else we do.

Donald Knuth

18.1 What is procedural generation (and what it isn’t)

Sometimes you hear “procedural generation” being thrown around as a term describing that some part of a video

game is generated with an element of randomness to it.

This isn’t entirely true, since “procedural generation” suggests the presence of a “procedure to generate the item”,

in short: an algorithm.

A procedurally generated weapon is not statically created by an artist, but instead by an algorithm that puts together

its characteristics. If the algorithm has the same data in its input, then the same item will be generated as an output.

When you introduce an element of randomness (or more precisely pseudo-randomness) you have what is called

“random generation”.

Let’s make a simple example: we want our Super-duper-shooter to make use of procedural/random generation to

create your weapons. The following example will clarify the difference in algorithms between procedural and random

generation, all weapons have a body, a scope, a barrel and an ammo magazine.

This is a possible algorithm for a procedural weapon:

Listing 118: Example procedural weapon creation

1 function createProceduralWeapon () -> Weapon{

2 Weapon wp = new Weapon ();

3 // Load some pre -defined components

4 wp.loadBody("body0001.png");

5 wp.loadScope("scope0051.png");

6 wp.loadBarrel("barrel0045.png");

7 wp.loadAmmoMagazine("mag0009.png");

8 // set weapon damage to 45

9 wp.setDamage (45);

10 // set weapon range to 15

11 wp.setRange (15);

12 // set weapon spread to 23

13 wp.setSpread (23);

14 return wp;

15 }

This instead is a possible algorithm for a random weapon, for simplicity we assume that the pieces are all compatible:

Listing 119: Example Randomized weapon creation

1 function createRandomizedWeapon () -> Weapon{

18 PROCEDURAL CONTENT GENERATION 435



2D Game Development: From Zero To Hero

2 Weapon wp = new Weapon ();

3 // Load some randomized components

4 wp.loadRandomBodyFrom("weaponBodies/shotguns");

5 wp.loadRandomScopeFrom("weaponScopes/shotguns");

6 wp.loadRandomBarrelFrom("weaponBarrels/shotguns");

7 wp.loadRandomAmmoMagazineFrom("weaponMagazines/shotguns");

8 // set weapon damage to a value between 35 and 50

9 wp.setDamage(random (35, 50));

10 // set weapon range to a value between 13 and 18

11 wp.setRange(random (13, 18));

12 // set weapon spread to a value between 20 and 30

13 wp.setSpread(random (20, 30));

14 return wp;

15 }

As you can see, the algorithms are very similar to each other, but the second one has an element of randomness

added to it.

So, as a memorandum:

Procedural generation is consistent, even though something is generated in real time, given the same input the

same output will be returned.

Random generation is usually not consistent, although it is possible to control the random generator (via its seed)

to obtain deterministic results, given the same input.

Seeding a random number generator correctly can allow you to generate a huge universe without storing it into

memory, for instance; although the edits to such universe will have to be saved in some other way.

18.2 Advantages and disadvantages

As with everything, procedural and random generation has its advantages and disadvantages, which will be ex-

plained below.

18.2.1 Advantages

18.2.1.1 Less disk space needed

Using algorithms to build worlds and items means generating them mostly in real-time, which means we don’t have

to save them to hard-disk, since if the algorithm is not randomized, you can always re-create the same worlds and

items when requested. This was more pressing at the times of the NES, where game sizes were usually around a

couple hundreds of KB.

18.2.1.2 Larger games can be created with less effort

When a world is handcrafted, everything has to be placed and textured manually, which takes time and money. This

obviously puts a superior limit to how big these worlds can be.

18 PROCEDURAL CONTENT GENERATION 436



2D Game Development: From Zero To Hero

When procedural (and randomized) generation comes into play, there is no theoretical limit to how big these worlds

can be (considering an infinitely powerful hardware).

Same goes for items, each handcrafted item takes time andmoney, while using procedural generation you can re-use

components of said items to generate a potentially infinite number of new items that have certain characteristics.

18.2.1.3 Lower budgets needed

Creating a video game is expensive, in fact the so-called “AAA” games costs are in the order of millions of dollars. Us-

ing procedural and random generation you can create variations of your resources (textures, for instance), lowering

costs.

18.2.1.4 More variety and replayability

When a world and its objects are handmade, the game experience is bound to be fixed: same items to collect, same

world, same overall experience. Procedural and random generation can bring some sense of “unknown” to the game

every time you play. This also enhances the replayability value of the game.

18.2.2 Disadvantages

18.2.2.1 Requires more powerful hardware

Procedural generation makes use of algorithms, and such algorithms can be really taxing on the computer hardware,

so loading times might increase or users with less powerful computers might experience stutters as their computer

cannot “keep up” with the game demands.

18.2.2.2 Less Quality Control

Computers are able to crunch numbers at an incredible rate, but they lack creativity. In a procedurally generated

world you lose the “human touch” that can introduce subtleties and changes that can be brought by a good designer

with experience.

At the same time, there is a variation in user experience, so you cannot guarantee the same gameplay quality to all

players. Some players may find a really easy map to play in, while others might find a really hard map that prohibits

such gameplay.

18.2.2.3 Worlds can feel repetitive or “lacking artistic direction”

Consequence of having less quality control, worlds and items might feel like they “lack artistry”, as well as being

repetitive.

If you use procedural and randomized generation, you have the chance of generating incredibly large worlds with a

huge variety of items with less resources and algorithms; that’s where our human nature of “recognizing patterns”

crashes the party: repeating patters are really easy to spot and can remove us from the game’s atmosphere and

introduce us to one of our worst enemies: boredom.

18 PROCEDURAL CONTENT GENERATION 437



2D Game Development: From Zero To Hero

This can become even worse if we try to “find the middle ground” and build our levels using hand-made “chunks”,

joined together. If we want to avoid our player getting bored by repeating “pieces of level” we will need to build a

lot of chunks that fit together to make something interesting and new almost every time.

18.2.2.4 You may generate something unusable

In extreme cases, there is a possibility that we end up generating an unplayable world, or useless items: terrain too

high to climb, walls blocking a critically-necessary area, dungeon rooms with no exits, etc…

18.2.2.5 Story and set game events are harder to script

Being uncertain, procedural generation makes set events harder to script, if not impossible. In this case it’s more

common to use a mix of procedural generation and pre-made game elements, where the fixed elements are used

to drive the narrative and the procedurally generated elements are used to create an open world for the player to

explore and vary its gameplay experience.

18.3 Where it can be used

Procedural (and random) generation can be used practically anywhere inside of a video game, some examples could

be the following:

• World Generation: Using an algorithm called “Perlin noise”, you can generate a so-called “noise map” that

can be used to generate 3D terrain, using giving areas with higher concentration a higher height. For dungeon-

crawling games you might want to use a variation of maze generation algorithms, and so on so forth;

• Environment Population: You can use an algorithm to position certain items in the world, and if an element

of randomness is required, positioning items in a world is certainly a very easy task and can add a lot to your

game, but be careful not to spawn items into walls!;

• Item Creation: As stated previously, you can use procedural generation to create unique and randomized

items, with different “parts” or different “stats”, the possibilities are endless!;

• Enemies and NPCs: Even enemies and NPCs can be affected by procedural (and randomized) generation,

giving every NPC a slightly different appearance, or scaling an enemy size to create a “behemoth” version

of a slime, maybe by pumping its health points too, randomizing texture colors, again the possibilities are

endless;

• Textures: It’s possible to colorize textures, giving environments different flavours, as well adding a layer of

randomness to a procedurally generated texture can greatly enhance a game’s possibilities;

• Animations: An example of procedurally generated animations are the so-called “ragdoll physics”, where

you calculate the forces impacting a certain body (and it’s “virtual skeleton”). A simpler way could be making

the program choose randomly between a set of pre-defined “jumping animations” to spice up the game;

• Sounds: You can use sound manipulation libraries to change the pitch of a sound, to give a bit of randomness

to it, as well as using “sound spatialization” by changing the volume of a sound to make it come from a certain

place, compared to the player’s position;

• Story: In case you want to put some missions behind a level-gate, you can use procedurally generated

18 PROCEDURAL CONTENT GENERATION 438



2D Game Development: From Zero To Hero

missions to allow the players to grind for experience and resources, so they are ready for the upcoming story

checkpoints;

• Difficulty Management: Procedural generation can be involved into difficulty management by handing the

enemy parameters and spawning to suit our needs.

Random Trivia!

Want to see procedural generation brought to the extreme? Check out .kkrieger (by .

theprodukkt, a subdivision of the demo group Farbrausch): it’s a first person shooter that

weighs 96Kb (no, it’s not a typo) that makes massive use of procedural generation,

from textures, to meshes, to sound.

18.4 Procedural Generation and Difficulty Management

As stated above, we can use elements of procedural generation to aid us in managing the difficulty of our game,

tweaking the challenge we are offering to our players.

18.4.1 Static difficulty

Sometimes called “Algorithmic Difficulty”, is the kind of difficulty management seen in many games: elements and

enemies are placed in a way that gives the player an ascending difficulty curve, with different parameters.

Such parameters build the abstract concept of “difficulty level” (beginner, normal, advanced, master, …): each

difficulty level contains a set of parameters that change how the game feels.

In practice usually you assign a “difficulty level” to an area andmake the game handle the enemy spawn accordingly;

sometimes such “area level” is used to make the game spawn randomized items with a certain power level, given

a certain amount of displacement of its statistics.

18.4.2 Adaptive Difficulty

Not really considered “procedural generation”, adaptive difficulty makes use of different algorithms (taken on a lease

from AI programming) to tweak the game difficulty in reaction to how the player plays.

If the player progresses quickly, the game will become harder, instead if the player tends to lose lives, the game will

become easier and less random.

The objective of adaptive difficulty is to create an “optimal experience” for everyone, by determining if the current

game is “too easy” or “too hard” for the player.

18.4.2.1 Rubberbanding

Rubberbanding (not to be confused with “network lag”, sometimes called “rubberbanding”) is an instance of adaptive

difficulty, mostly used in racing games, where the opponents’ abilities (like speed in racing games) are “tweaked”

to keep the game challenging (but not unfair).

18 PROCEDURAL CONTENT GENERATION 439



2D Game Development: From Zero To Hero

This usually ends up with opponents getting faster the further in the lead the player is (sometimes even going over

the maximum speed) or going slower when the player falls behind too much.

You can see as a virtual “rubber band” that ties your opponents to you, the more the rubber band is stretched, the

more the opponents are “attracted” to you (or you to them, it can work both ways).

Random Trivia!

“Rubberbanding” is not limited to racing games. For instance NBA Jam tweaks player

skills to keep the game competitive and enjoyable by using rubberbanding: if you’re

too far ahead, the opponents will get a skill boost.

18.4.3 Static vs. Adaptive Difficulty

Each approach has its own advantages and shortcomings, which can make one or the other better suited for your

game.

Static difficulty is easy to create and leaves choice to the players between varying levels of difficulty; maybe someone

wants a more “relaxing experience” instead of being continuously challenged.

The biggest shortcoming is that each level of difficulty is an estimate of its difficulty, so an “easy mode” may be way

too easy, while the “normal” mode may be too hard for someone. It’s hard to find the balance.

Static difficulty can be planned by using difficulty curves, which can be part of either a technical or a proper game

design document.

Also there’s all the work dedicated to program the parameters for each level of difficulty.

Adaptive difficulty is harder to code and sometimes can lead to great results, but it also completely invalidates the

concept of “grinding” in an RPG game, for instance. If you try to become stronger by undertaking easier quests, you

will find that the quests keep getting harder the stronger you get.

Adaptive difficulty doesn’t allow the player to “grind their way out” of a difficult part of the game.

18 PROCEDURAL CONTENT GENERATION 440



2D Game Development: From Zero To Hero

19 Developing Game Mechanics

Fools say that they learn by experience. I prefer to profit by others’

experience.

Otto von Bismarck

In this section we will take a look at how to develop some known game mechanics, with pieces of code to aid you.

19.1 General Purpose

19.1.1 I-Frames

I-Frames (also known as “invincibility frames”) is a term used to identify that period of time after being hit, where

the character either flashes or becomes transparent and is immune to damage.

This mechanic can be seen as “giving the player an advantage” but instead it has deeper roots into “fairness” than

“difficulty management”, let’s see why.

Let’s assume that our main character has 100 health points, and touching an enemy deals 5 points of damage.

In absence of I-Frames, this would translate into 5 points of damage every frame, which would in turn come out

between 5 · 30 = 150 and 5 · 60 = 300 points of damage per second (at respectively 30 and 60fps).

The average human reaction time is around 1 second, this would mean that touching an enemy would kill us before

we even realize we are touching such enemy.

Checking if we’re still colliding with an enemy after receiving damage is not a good strategy, since that would allow

the player get only one point of damage from a boss, and then carefully stay inside the boss’s hitbox while dealing

damage to the enemy. Thus allowing the player to exploit the safeguard.

Giving a brief period (usually between 0.5 and 2 seconds) of invincibility after being hit, allows the player to under-

stand the situation, reorganize their strategy and take on the challenge at hand. After the invincibility period, the

player will take damage again, patching the exploit we identified earlier.

I-Frames can be easily implemented via timers, in a way similar to the following:

Listing 120: Example of I-Frames Implementation

1 const f loat INVINCIBILITY_TIME = 0.75; // Seconds of invincibility

2 // ...

3 function update( f l oat dt){

4 f l oat inv_time = 0;

5 // ...

6 i f (inv_time <= 0){

7 // Check for collision

8 // ...

9 // Collision has been detected here , we have a hit

10 inv_time = INVINCIBILITY_TIME; // Start of the invincibility period

11 }else{

12 // We are currently invincible

19 DEVELOPING GAME MECHANICS 441



2D Game Development: From Zero To Hero

13 inv_time = inv_time - dt; // We decrease the invincibility time

14 }

15 }

Tip!

Remember: feedback is important! You need to let the player know when they are

invincible due to i-frames. This can be done by making the player semi-transparent,

flashing or anything else that can indicate a “different status”.

19.1.2 Tilemaps

Tilemaps are a really interesting abstraction that allows us to draw maps by using pre-made “tiles” instead of having

to draw them “pixel-by-pixel”.

Figure 382: Example of a tileset and a tilemap drawn with it 11

This also allows us to have a new coordinate system that works “using tiles”, which could be preferable than single

pixels (since we may put properties on our tiles, like a “solid” property for collision detection).

Another advantage of tilemaps is the ability to use a small texture to draw gigantic maps without adding much data

in memory (tilemaps are a fantastic example of the “Flyweight Pattern”).

19.1.2.1 Rectangular Tilemaps

Rectangular tilemaps are the most commonly used tile maps in game development: it’s easy to translate back and

forth between “screen pixels” and “tiles”, and if the tilesets are well-made everything looks seamless.

This has the advantage of using less memory (we need to save only the tileset, plus a few coordinates and pointers),

thus making our game perform better.
11Jawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker

19 DEVELOPING GAME MECHANICS 442

https://adamatomic.itch.io/jawbreaker


2D Game Development: From Zero To Hero

Random Trivia!

Super Mario Bros. uses maps that are based on square tiles. Even the pipes are tiles:

this allows the game to have variable lengths of pipes without increasing the number

of tiles.

[This section is a work in progress and it will be completed as soon as possible]

19.1.2.2 Hexagonal Tilemaps

Sometimes you may want to underline a “tabletop” game feel, in that case a hexagonal tilemap (sometimes called

“hexmap”) may be a great idea (at the cost of more complicated algorithms).

Figure 383: Simple structure of a hexmap

Hexmaps allow for a different kind of movement (the player can move to up to 6 directions, instead of 4), which

makes for an interesting remix of the classic tile-based mechanics.

To be able to work with tilemaps, we need to get acquainted with the concept of “outer circle” of a polygon, which

is the circle that intersects the edges of a polygon. In the case of our hexagon

radius

Figure 384: The outer circle or an hexagon

19 DEVELOPING GAME MECHANICS 443



2D Game Development: From Zero To Hero

Now we can work out how to measure the space occupied in the Cartesian system by using the radius of the outer

circle. We will obtain the following results:

size1 = 2 · radius

size2 =
√
3 · radius

radius

Figure 385: The size of an hexagon, calculated

With this, we can calculate the distances between the centres of the outer circles, in a way that allows us to create

our hexmap.

dist1 =
3

4
· size1 =

3

4
· 2 · radius = 3

2
· radius

dist2 = size2 =
√
3 · radius

19 DEVELOPING GAME MECHANICS 444



2D Game Development: From Zero To Hero

Figure 386: Making a hexmap

Note!

If you want to turn the hexagons “pointy side up”, you just need to switch over the

formulas.

[This section is a work in progress and it will be completed as soon as possible]

19.1.2.3 Isometric Tilemaps

In some cases you may want to try and give your game a more “premium” feel: isometric maps can help you in that.

The game is technically 2D, but the way the tiles are designed makes it look like it’s a 3D game!

Figure 387: A simple isometric tiles and a tilemap

Isometric tilemaps make use of more difficult algorithms, considering the odd shape the tiles are (usually they’re

diamond-shaped).

19 DEVELOPING GAME MECHANICS 445



2D Game Development: From Zero To Hero

Random Trivia!

Diablo 2 is actually a 2D game that uses isometric tiles. Every item and character is a

pre-rendered sprite: this means that every item drop is also pre-rendered and stored

with some defined degrees of rotation to give a more variegated feeling.

[This section is a work in progress and it will be completed as soon as possible]

19.1.3 Scrolling Backgrounds and Parallax Scrolling

19.1.3.1 Infinitely Scrolling Backgrounds

When doing any kind of game that features a scrolling background, you should construct your art accordingly, al-

lowing for enough variety to make the game interesting while avoiding creating huge artwork that weighs on the

game’s performance.

In a game that uses a scrolling background, the background used should be at least two times the screen size, in

the scrolling direction (Virtual Resolution can prove really useful in this case) and the image should have what are

called “loop points”.

Loop points are points where the image repeats itself, thus allowing us to create an image that is virtually infinite,

scrolling through the screen. To have a so-called “loop point” the image should be at least twice the size of the

screen, in the scrolling direction.

The image below shows a background and its loop points.

Figure 388: Demonstration of an image with loop points

To make an image appear like it’s scrolling infinitely we need to move it back and forth between loop points when

the screen passes over them.

For ease of explanation let’s consider a screen scrolls towards the right, when we have reached a loop point, we

reset the image position back to the position it was at the beginning and, since the image has been crafted to loop,

the player won’t notice that the background has been reset.

Listing 121: Example of an infinitely scrolling background implementation

19 DEVELOPING GAME MECHANICS 446



2D Game Development: From Zero To Hero

1 f l oat background_x_offset = 0.0; // The x offset of the background

2 const f loat BACKGROUND_X_SIZE = 512; // The horizontal size of the background

3 const f loat LOOP_POINT = 256; // The horizontal loop point of the image

4 const f loat DISTANCE_FACTOR = 0.5; // The background moves at half the player speed

5

6 function update( f l oat dt){

7 // ...

8 // In case we're moving right , the background scrolls left slightly

9 i f (player.speed_x > 0){

10 // Update player 's position and state

11 ...

12 // Update the background position

13 background_x_offset = background_x_offset - player.speed_x * DISTANCE_FACTOR * dt;

14 // If we passed the image 's loop point

15 i f (background_x_offset <= - LOOP_POINT){

16 // We reset the coordinates , keeping note of the remainder

17 background_x_offset = background_x_offset % LOOP_POINT;

18 }

19 }

20 // In case we're moving left , the background scrolls right slightly

21 i f (player.speed_x < 0){

22 // Update player 's position and state

23 ...

24 // Update the background position

25 background_x_offset = background_x_offset - player.speed_x * DISTANCE_FACTOR * dt

26 i f (background_x_offset >= 0){

27 // We reset the coordinates , keeping note of the remainder , just backwards

28 background_x_offset = background_x_offset - BACKGROUND_X_SIZE;

29 }

30 }

31 }

32

33 function draw(){

34 ...

35 // Draw the background

36 screen.draw(background , (background_x_offset , 0));

37 ...

38 }

19.1.3.2 Parallax Scrolling

Parallax in games is an effect that can give more depth to our environment: it looks like objects farther away are

moving much slower than the objects closer to us.

This can be used to our advantage, along with some other tricks to enhance the perception of depth explained in

the chapter dedicated to graphics.

Creating a parallax effect is quite easy: first we need at least two background layers (although three seems to be

the best compromise between performance and depth of the effect):

19 DEVELOPING GAME MECHANICS 447



2D Game Development: From Zero To Hero

• The sprite layer that will represent the closest layer to us, that will move at a certain speed that will be

decided while developing the game;

• A moving background that will move slower compared to the sprite layer, thus giving the parallax effect;

• A fixed background that will represent our horizon and the farthest objects.

For the sake of clarity, we will re-use an image presented earlier to explain the “painter’s algorithm”:

Figure 389: How we can split our game into layers

As stated earlier, a third optional background can be added to deepen the parallax scrolling effect, such background

can take any of these positions:

• Above the sprite layer: in this case this “foreground layer” will need to move faster than the sprite layer and

it should include very unobtrusive graphics, to avoid hiding important gameplay elements (like enemies);

• Between the sprite layer and the first moving background: in this case, the optional background should

move slower than the sprite layer, but faster than the first moving background;

• Between the first moving background and the fixed background: in this case, the optional background

will have to move slower than the first moving background.

The backgrounds should move all in the same direction, depending on the direction our character is moving: if our

character is moving right, our moving backgrounds should move left.

Here’s an example of how a simple parallax scrolling can be implemented between two rectangles:

Listing 122: Example of parallax scrolling implementation

1 boolean running = True;

2

19 DEVELOPING GAME MECHANICS 448



2D Game Development: From Zero To Hero

3 class Rectangle{

4 // ...

5 }

6

7 // We create a display surface of 640 x480 pixels

8 Surface screen_surface = engine.set_display ((640, 480));

9

10 // We keep the second rectangle a bit lower to be able to see both

11 Rectangle rectangle_1 = new Rectangle(x=245,

12 y=100,

13 width =150,

14 height =100,

15 fill_color =(0, 0, 255));

16 Rectangle rectangle_2 = new Rectangle(x=245,

17 y=120,

18 width =150,

19 height =100,

20 fill_color =(0, 255, 0));

21 f l oat rectangle_1_speed = 7;

22 f l oat rectangle_2_speed = 14;

23

24 // This will be 1 for right and -1 for left

25 in t movement_direction = 0;

26

27

28 // For ease , we assume we have an event queue we can process and we won't

29 // take care of framerate limiting

30 while (running){

31 // --------------- INPUT ---------------

32 for event in event_queue{

33 i f (event.type == QUIT){

34 // We are quitting the game

35 running = False;

36 }

37 i f (event.type == KEYPRESS){

38 // We are pressing a key

39 i f (event.key == RIGHT){

40 // We are pressing the right key (moving the camera rightwards)

41 movement_direction = -1;

42 }

43 i f (event.key == LEFT){

44 // We are pressing the left key (moving the camera leftwards)

45 movement_direction = 1;

46 }

47 }

48 i f (event.type == KEYRELEASE){

49 i f (event.key == RIGHT or event.key == LEFT){

50 movement_direction = 0;

51 }

52 }

19 DEVELOPING GAME MECHANICS 449



2D Game Development: From Zero To Hero

53 }

54 // --------------- UPDATE ---------------

55 i f (movement_direction != 0){

56 rectangle_1.x += rectangle_1_speed * movement_direction;

57 rectangle_2.x += rectangle_2_speed * movement_direction;

58 }

59 // --------------- DRAW ---------------

60 // Fill the display with black

61 screen_surface.fill((0, 0, 0))

62 // Draw the rectangles

63 rectangle_1.draw_on(screen_surface);

64 rectangle_2.draw_on(screen_surface);

65 // Show the result on screen

66 screen_surface.display ();

67 }

19.1.4 Avoid interactions between different input systems

This is a small improvements that can be done on menu systems: if the player is using a keyboard to navigate the

menu, the mouse should not interact with the menu.

In many frameworks when a fullscreen game window “captures” the mouse cursor, this is put on the center of the

screen, which could be where a menu item is positioned.

Now imagine you are “flowing through” the menu, trying to load a saved file and the cursor is detected pointing at

the “delete save file” option; you are briskly walking through the menu and what you think is the “do you want to

load this file?” dialog is actually asking “do you want to delete this save file?”. You select “yes” by pressing enter

on your keyboard and your save file is gone!

This is an extreme edge case, but it could happen. Even if it is a minor annoyance like starting a new save file when

instead you want to load an existing one, it diminishes the quality of your experience.

19.1.5 Sprite Stenciling/Masking

[This section is a work in progress and it will be completed as soon as possible]

19.1.6 Loading screens

If you load your resources in the same thread that executes the main game loop, your game will lock up while loading,

which may trigger windows to ask you if you want to terminate the task. In this case it is better to dip our toes into

multi-threading and create a proper loading screen.

The loading screen will be composed of two main components:

• The graphical loading screen: that will show the progress of the resource loading to the user, as well as

tips and animations;

19 DEVELOPING GAME MECHANICS 450



2D Game Development: From Zero To Hero

• The actual resource loading thread: that will take care to load the resources to the right containers, as

well as communicating the global loading status to the loading screen in the main game loop.

We can represent the two “loops” in the following UML diagram:

main_thread

Start loading

Loading state == "Done"yes no

Return to Gameplay Read Percentage

Percentage == 100?yes no

Set state as 'loading complete' Set state as 'loading'

Update Screen

Draw Screen

Game open? yes

loading_thread

Load resource

Update Loading Status

More resources? yes

Figure 390: Rough UML diagram of a multi-threaded loading screen

[This section is a work in progress and it will be completed as soon as possible]

19.1.7 Simulating Inertia

After learning how to move something on a screen, the next step is making the movement less “jarring” by introduc-

ing inertia. Before throwing solutions around, let’s see what the problem is.

When we press a button, without inertia, our character starts moving at full speed towards the direction we defined,

and it will stop as soon as we let go of the button. We can represent such behaviour with the following chart:

19 DEVELOPING GAME MECHANICS 451



2D Game Development: From Zero To Hero

S
p
e
e
d

Button
Pressed

Button
Released

Figure 391: Example chart of how movement without inertia looks

This could be jarring on its own, but the situation gets more serious the higher the speed difference: one thing

is having a character being able to run from a standstill and stop immediately, but it feels all the more jarring if

a character can turn 180 degrees on its path without the slightest hint of inertia (we assume that positive speed

means “going right”, while negative speed means “going left”):

Going
Right

Going
Left

S
p
e
e
d

Press
Right
Arrow

Press
Left
Arrow

Figure 392: Example chart of how movement without inertia looks: reversing directions

If this is connected to a fully-tracking camera system your player is in for a ride rivaling the deadliest rollercoasters

in the world. What we want is the speed curve to behave more like the following (here too we assume that positive

speed means “going right”, while negative speed means “going left”):

19 DEVELOPING GAME MECHANICS 452



2D Game Development: From Zero To Hero

Going
Right

Going
Left

S
p
e
e
d

Press
Right
Arrow

Press
Left
Arrow

Figure 393: Example chart of how movement with inertia looks

A “softer” transition between directions can be a good way to avoid nausea as well as making the game behave more

realistically, the change of direction can be also coupled with a skidding animation to make it even more convincing.

Random Trivia!

Inertia is so important (and common) that even the famous “Super Mario Bros.” (1983)

for the NES features it, as well as a “skidding animation”.

In this section we will look at how to simulate inertia in a 1-dimensional space, where we can only move left or right.

When simulating inertia, the first things we need to know are:

• The top speed

• The acceleration rate

• The deceleration rate

• The direction we’re going

• The direction we want to go

Let’s think of the following situation, our character is running rightwards at a velocity v, measured in pixels per

frame:

v

Figure 394: Example of character running

This means that the character’s x coordinate is moving every frame using the formula:

19 DEVELOPING GAME MECHANICS 453



2D Game Development: From Zero To Hero

xn+1 = xn + v

Now we suddenly want the player to start walking leftwards: we need to apply an acceleration a in that direction:

va

Figure 395: Applying an acceleration to a character running

The new acceleration will influence the velocity, frame by frame, with the formula

vn+1 = vn + a

Since velocity and acceleration have opposite directions, the acceleration we’re applying will start “eating away the

velocity” frame by frame, until our character starts moving leftwards. This “eating away” phase is what gives the

feeling of inertia.

va

v

a

va
Frame n

Frame n+1

Frame n+2

Figure 396: Applying an acceleration frame by frame leads to the feeling of inertia

Being acceleration and velocity both vectors, we can apply an acceleration both in a one-dimensional way (like a 2D

platformer) or a 2-dimensional way (like a space shooter) and the formulas will still be valid.

Deceleration is a special case of what we’ve seen so far, with the exception that the acceleration will always have

direction opposite to velocity and as soon as velocity reaches zero, we stop applying it.

Now we can start writing some code:

19 DEVELOPING GAME MECHANICS 454



2D Game Development: From Zero To Hero

Listing 123: Code for simulating inertia

1 // ...

2 class Player{

3 const f loat MAX_SPEED = 50.0; // Maximum speed

4 const f loat ACCEL = 15.0; // The acceleration rate

5 const f loat DECEL = 30.0; // The deceleration rate

6 Vector2 input_accel = Vector2 (); // Defines the direction we are accelerating

7 Vector2 velocity = Vector2 (); // Defines the direction and magnitude of our speed

8 Vector2 position = Vector2 (); // Defines our current position , in (x,y) coordinates

9 bool is_moving = False; // Tells us if we're moving

10

11 function handle_input (){

12 // First of all , we need to zero the input_accel , or we'll be working on "residual data"

13 input_accel = Vector2.ZERO;

14 // Now we can handle movement

15 i f (KEYBOARD.Left_Arrow_Pressed){

16 input_accel.x = input_accel.x - 1;

17 }

18 i f (KEYBOARD.Right_Arrow_Pressed){

19 input_accel.x = input_accel.x + 1;

20 }

21 i f (KEYBOARD.Down_Arrow_Pressed){

22 input_accel.y = input_accel.y + 1;

23 }

24 i f (KEYBOARD.Right_Arrow_Pressed){

25 input_accel.y = input_accel.y - 1;

26 }

27 // If any component of the acceleration vector is not zero , we are moving

28 i f (input_accel != Vector2.ZERO){

29 is_moving = True;

30 }

31 }

32

33 function handle_movement( f l oat dt){

34 i f (is_moving){

35 // Vectors will take care of summing forces

36 velocity = velocity + ACCEL * dt * input_accel;

37 // We need to clamp the speed , to avoid going too fast

38 velocity.clamp(MAX_SPEED);

39 }else{

40 // We are stopping , let's subtract the deceleration

41 f l oat velocity_value = velocity.length () - DECEL * dt;

42 i f (velocity_value < 0){

43 // If, After decelerating , we have a negative value , we need to make it zero or

the object will start moving backwards

44 velocity_value = 0;

45 }

46 // We are just changing the length of the vector , so we can just clamp its length

47 velocity.clamp(velocity_value);

48 }

19 DEVELOPING GAME MECHANICS 455



2D Game Development: From Zero To Hero

49

50 // Now it's time to move the object

51 position = position + velocity;

52 }

53 }

19.1.8 Corner correction

Let’s consider the following situation: our character is jumping, but due to the player being a bit too eager on their

jump, the collision boxes are still slightly overlapping:

Figure 397: What would be a good collision response for this situation?

The character’s head is just slightly hitting the corner of the geometry, but since collision detection doesn’t really

“care” about the kind of movement you’re doing the jump will be stopped.

Wouldn’t it be better if instead the character was just “slightly pushed” to the right so to complete the jump?

Figure 398: Corner correction makes for a more fluid experience

That would make it so the player doesn’t get frustrated at a way-too-precise collision detection (remember me saying

“you don’t want precise collision detection?) and the game flow would be a lot smoother.

19 DEVELOPING GAME MECHANICS 456



2D Game Development: From Zero To Hero

Tip!

This doesn’t help only with side-scroller style run’n’jump games: if you’re making a

top-down game (like a 2D RPG) using tiles where movement is not tile-based. This will

give you a smoother gameplay.

A possible implementation of a corner-correction algorithm, specifically for avoiding the jumping problem, could be

the following:

Listing 124: Possible implementation of a simple corner correction

1 function update( f l oat dt){

2 // Using the brute force checking for simplicity

3 for (block in player.findCollisions(blocks)){

4 // ...

5 i f (player.is_jumping){

6 // We are jumping , we need to check if we are ascending

7 // this way we will avoid "bonking our head" on a pixel

8 i f (player.velocity.y < 0){

9 // We know we are ascending , let's check how far we are

10 // from the borders and react accordingly

11 i f (player.position.x > block.rect.right - 5){

12 // The player 's left side is penetrating the block by

13 // less than 5 pixels , let's correct it

14 player.position.x = block.rect.right;

15 }else i f (player.position.x + player.width < block.rect.left + 5){

16 // The player 's right side is penetrating the block by

17 // less than 5 pixels , let's correct it

18 player.position.x = block.rect.left - player.width;

19 }else{

20 // The player is totally colliding with (bonking its head on) the block ,

21 // without need for corner correction , let's just act normally

22 player.velocity.y = 0;

23 player.position.y = block.rect.bottom;

24 }

25 }

26 }

27 }

28 // ...

29 }

19.2 2D Platformers

19.2.1 Simulating Gravity

Gravity in a 2D platformer is quite easy to simulate: you just need to apply a constant acceleration towards the

direction your gravity is pulling (it doesn’t have to be towards the bottom of the screen!) and move your objects

accordingly to such acceleration.

19 DEVELOPING GAME MECHANICS 457



2D Game Development: From Zero To Hero

Your acceleration should not be precise (like the physics constant 9.81m/s2), you don’t want to make a physics

engine: you want to make a somewhat convincing (or even better: entertaining) approximation of reality.

This is usually done before the player movement is used to update the character’s status (but after the player input

has been captured). Remember to add this acceleration before the collision detection is processed.

A useful precaution to avoid the bullet through paper problem when you are working with long falls: put a limit at

the fall velocity (kind of like air friction limits an object’s fall velocity) of your objects. By applying a hard limit to the

velocity, your gravity will be realistic but won’t break your simulation.

Listing 125: Code for applying gravity to an object

1 const int GRAVITY_ACCELERATION = 10;

2 const f loat MAX_FALL_VELOCITY = 500;

3 // ...

4 // Apply Gravity

5 speed_y = speed_y + GRAVITY_ACCELERATION;

6 // Cap the fall speed

7 i f (speed_y > MAX_FALL_VELOCITY){

8 speed_y = MAX_FALL_VELOCITY;

9 }

10 // ...

19.2.2 Avoiding “Floaty Jumps”

The previous trick shows a physics-accurate jumping: if we plot the height against time, we would get something

that represents the curve of jump like the following:

Height

Time

Figure 399: Plotting a physics-accurate jump

Although this can give the sensation that the character we’re controlling is “floaty”, which is not fun. In this case it’s a

better idea to enhance gravity when falling, to give the character some more “weight”, which would be represented,

more or less, by the following curve:

19 DEVELOPING GAME MECHANICS 458



2D Game Development: From Zero To Hero

Height

Time

Figure 400: Plotting a jump with enhanced gravity

This can be obtained with few simple lines of code, not very different from the gravity example of earlier:

Listing 126: Code for jump with enhanced gravity while falling

1 const int GRAVITY_ACCELERATION = 10;

2 const f loat MAX_FALL_VELOCITY = 500;

3 const f loat GRAVITY_FALL_MULTIPLIER = 1.5;

4 // ...

5 // Are we jumping?

6 i f (speed_y < 0){

7 // Apply Gravity Normally

8 speed_y = speed_y + GRAVITY_ACCELERATION;

9 }else{

10 // We're falling , enhance gravity

11 speed_y = speed_y + GRAVITY_ACCELERATION * GRAVITY_FALL_MULTIPLIER;

12 }

13 // Cap the fall speed

14 i f (speed_y > MAX_FALL_VELOCITY){

15 speed_y = MAX_FALL_VELOCITY;

16 }

17 // ...

In this example we are assuming that the framework used uses the screen coordinate system, and jumping brings

the player from bottom towards the top of the screen. If you want different behaviour (like gravity inversion in puzzle

games), something a tiny bit more involved may be in order.

19.2.3 Making jumps “float differently”

As an addendum to the previous section, you can change how gravity is applied at the peak of the jump to give the

player more time to correct their movement.

This can be done by reducing gravity when the jump is peaking, thus obtaining a plot similar to the following:

19 DEVELOPING GAME MECHANICS 459



2D Game Development: From Zero To Hero

Height

Time

Figure 401: Plotting a jump with multiple gravity changes

This is an example of a jump with multiple “gravity changes”:

Listing 127: Code for jump with more gravity while falling and less when peaking

1 const int GRAVITY_ACCELERATION = 10;

2 // We consider the jump "peaking" when the speed is between -50 and 50

3 const f loat PEAKING_SPEED = 50

4 const f loat MAX_FALL_VELOCITY = 500;

5 const f loat GRAVITY_FALL_MULTIPLIER = 1.5;

6 const f loat PEAKING_MULTIPLIER = 0.5;

7 // ...

8 // Are we jumping?

9 i f (speed_y < - PEAKING_SPEED){

10 // We're rising: apply Gravity Normally

11 speed_y = speed_y + GRAVITY_ACCELERATION;

12 }else i f (speed_y > PEAKING_SPEED){

13 // We're falling , enhance gravity

14 speed_y = speed_y + GRAVITY_ACCELERATION * GRAVITY_FALL_MULTIPLIER;

15 }else{

16 // Our jump is peaking , lower gravity to give more time

17 speed_y = speed_y + GRAVITY_ACCELERATION * PEAKING_MULTIPLIER;

18 }

19 // Cap the fall speed

20 i f (speed_y > MAX_FALL_VELOCITY){

21 speed_y = MAX_FALL_VELOCITY;

22 }

23 // ...

19.2.4 Ladders

[This section is a work in progress and it will be completed as soon as possible]

19 DEVELOPING GAME MECHANICS 460



2D Game Development: From Zero To Hero

19.2.5 Walking on slanted ground

[This section is a work in progress and it will be completed as soon as possible]

19.2.6 Stairs

[This section is a work in progress and it will be completed as soon as possible]

19.2.7 Ledge Grabbing

[This section is a work in progress and it will be completed as soon as possible]

19.2.8 Jump Buffering

A nice trick used mostly in 2D platformers to allow for smoother gameplay is “jump buffering”, also known as “input

buffering”.

Normally when a character is mid-air, the jump button does nothing, in code:

Listing 128: Code for jumping without buffering

1 function update( f l oat dt){

2 // ...

3 i f (controls.jump.isPressed ()){

4 i f (player.on_ground){

5 // Jump

6 }

7 }

8 // ...

9 }

Jump Buffering consists in allowing the player to “buffer” a jump slightly before the character lands, making the

controls a bit less stiff and the gameplay more fluid.

Frame n Frame n+1 Frame n+2

Jump button
pressed

Figure 402: Example of how jump buffering would work

Jump buffering usually is put into practice using a timer, in a fashion similar to the following:

Listing 129: Jump buffering example

19 DEVELOPING GAME MECHANICS 461



2D Game Development: From Zero To Hero

1 // ...

2 const f loat jumpBufferTime = 5.0;

3 // ...

4 function update( f l oat dt){

5 // ...

6 i f (controls.jump.isPressed ()){

7 player.hasBufferedJump = True;

8 player.jumpBufferCountdown = jumpBufferTime;

9 }

10 // Take note on how this piece is outside the "jump is pressed" section

11 i f (player.hasBufferedJump){

12 player.jumpBufferCountdown = player.jumpBufferCountdown - dt;

13 }

14 i f (player.on_ground){

15 i f (player.jumpBufferCountdown > 0.0){

16 // Jump

17 player.jumpBufferCountdown = 0.0;

18 player.hasBufferedJump = False;

19 }

20 }

21 // ...

22 }

19.2.9 Coyote Time

Coyote time (also known as “edge tolerance”) is a technique used to allow a player to jump a few frames after they

fall off a platform, allowing for a more fluid gameplay.

Frame n Frame n+1 Frame n+2

Jump Button
Pressed

Figure 403: Example of how coyote time would work

The trick is starting a countdown as soon as the player leaves a platform without jumping, then if the player presses

the jump button while that time is still going, they will perform the jump action, like they still were on a platform.

Listing 130: Coyote time code example

1 class Player{

2 bool coyote_time_started = False;

3 f l oat coyote_time = 0;

4 bool onground = False

19 DEVELOPING GAME MECHANICS 462



2D Game Development: From Zero To Hero

5 bool has_jumped = False

6 // ...

7 function update( f l oat dt){

8 // ...

9 i f (onground){

10 // Do stuff when player is on ground

11 // ...

12 }else{

13 i f (not has_jumped){

14 // Player is not on ground and has not jumped , the player 's falling

15 i f (not coyote_time_started){

16 coyote_time_started = True;

17 coyote_time = 5;

18 }else{

19 coyote_time = coyote_time - dt;

20 }

21 }

22 }

23 }

24

25 function jump(){

26 // This function takes care of jumping

27 // ...

28 i f (coyote_time > 0){

29 // Do Jump

30 }

31 // ...

32 }

33 }

19.2.10 Timed Jumps

A way to extend the mobility and challenge of a 2D platformer game is allowing players to jump higher the more the

jump button is pressed: this allows the character to perform low and high jumps without much effort, making timing

the jump button press a variable that adds to the challenge of a game.

20 Frames 40 Frames 60 Frames

Figure 404: Example of how timed jumps would work

19 DEVELOPING GAME MECHANICS 463



2D Game Development: From Zero To Hero

To work well, timed jumps need to be implemented by tracking the jump button’s onPress and onRelease events. When

the jump button has just been pressed, the character’s Y velocity will be set, as soon as the button is released, such

velocity will be capped, shortening the jump height.

Listing 131: Example code of how timed jumps work

1 class Player{

2 const f loat JUMP_VELOCITY = -12.0;

3 f l oat y_speed;

4 // ...

5 function onJumpKeyPressed (){

6 /* The jump key has just been pressed (doesn 't account the jump key being

7 pressed from previous frames) */

8 y_speed = JUMP_VELOCITY;

9 }

10

11 function onJumpKeyReleased (){

12 // The jump key was just released , cut the y_speed so the jump is lower

13 i f (y_speed < JUMP_VELOCITY / 2){

14 // The speed is higher than the cutoff speed (in absolute value)

15 y_speed = JUMP_VELOCITY / 2;

16 }

17 }

18 }

19.2.11 Wall Jumps

[This section is a work in progress and it will be completed as soon as possible]

19.2.12 Screen Wrap

[This section is a work in progress and it will be completed as soon as possible]

19.3 Top-view RPG-Like Games

19.3.1 Managing height

When it comes to Top-view RPG games, height is a way to give your game a lot more visual appeal. Let’s see how

we can manage height in our games.

19.3.1.1 Faking it

The simplest way to manage height in a Top-down RPG game is to not do so at all. If you have a good tileset the

player may not even realize it.

Let’s take the following simple example:

19 DEVELOPING GAME MECHANICS 464



2D Game Development: From Zero To Hero

Figure 405: A simple example of fake height in RPG 12

This can be seen as a “flattened” screen, where there are few collisions, while the tileset will “sell the effect”.

Figure 406: How few collisions may “sell” the effect of height 13

In the previous image, the red sections are the tiles where collision is present: the stairs have nothing special, they

are treated as any other “flat ground”, but the texture sells the effect of stairs.

We can go as complex as we want:

Figure 407: A more complex example of fake height 14

And still have a somewhat simple and flat path, from bottom to top.
12Dungeon Tileset, listed as Public Domain at https://opengameart.org/content/dungeon-tileset
13Dungeon Tileset, listed as Public Domain at https://opengameart.org/content/dungeon-tileset
14Dungeon Tileset, listed as Public Domain at https://opengameart.org/content/dungeon-tileset

19 DEVELOPING GAME MECHANICS 465

https://opengameart.org/content/dungeon-tileset
https://opengameart.org/content/dungeon-tileset
https://opengameart.org/content/dungeon-tileset


2D Game Development: From Zero To Hero

Figure 408: Even with complex tilemaps, the texture sells the height effect 15

If you’re good at map building, this simple way of doing things can get you far enough to make a convincing effect

and give variety to your environments without having to delve into complex algorithms that involve swapping layers

or something similar.

19.3.1.2 Managing height for real

[This section is a work in progress and it will be completed as soon as possible]

19.4 Rhythm Games

19.4.1 The world of lag

Welcome to the world of rhythm games, as with all new experiences we shall start with… the final boss: Lag.

Lag will be one of the most problematic things you will have to account for: things are not as easy as you may

imagine when it comes to implementing a rhythm game. Let’s see how to account for it, and eventually how to limit

its effect on the player experience.

19.4.1.1 Input Lag

First of all: the ever-present “input lag”: there is a certain time window between the moment the use presses a

button and the moment the game receives such input. In the middle we find electrons running at breakneck speed

through our keyboard circuitry, through the cable, to the motherboard, then the CPU, input abstraction layers in our

OS, and finally the input system in our game.

And we didn’t reach the game update stage yet.

Also we are not even accounting for the reaction time (about one second) from when the player sees something on

screen and when they react.

Input lag is something that we cannot avoid, but there are countermeasures, as we will see below.

19.4.1.2 Video Lag
15Dungeon Tileset, listed as Public Domain at https://opengameart.org/content/dungeon-tileset

19 DEVELOPING GAME MECHANICS 466

https://opengameart.org/content/dungeon-tileset


2D Game Development: From Zero To Hero

EJEC
T

DVD
-RW

DVD
-RW

USB

SATA

P
H
O
N
E

M
IC

LI
N
E
-I
N

AUD
IO

POWER

CARD

READ
ER

LCD-Pro

SELEC
T

MENU

-
+

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+ Scroll
Lock

Scrn Print
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del .

Ins

F1F2F3
F4F5

F6F7F8F9F10F11F12

Esc
1234567890

()*
&%̂$#@!

` ~

- _= +\ |

CtrlCtrl

Alt

ASDFGHJKL
Caps

Lock

; :' "

ZXCVBNM
ShiftShift

/ ?
. >

, <Alt Gr

QWERTYUIOP

[ {] }

Tab

Figure 409: Reference image for video lag

As with the input lag, there is also a not-negligible video lag. The game has to prepare the image, send it to the video

card, the card has to render it, apply effects and then send it to the screen, where the liquid crystals (or whatever

technology we will have in the future) will have the re-align to create the colored pixels on screen.

19.4.1.3 Audio Lag

EJEC
T

DVD
-RW

DVD
-RW

USB

SATA

PH
O
N
E

M
IC

LI
N
E
-I
N

AUD
IO

POWER

CARD

READ
ER

LCD-Pro

SELEC
T

MENU

-
+

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+ Scroll
Lock

Scrn Print
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del .

Ins

F1F2F3
F4F5

F6F7F8F9F10F11F12

Esc
1234567890

()*
&%̂$#@!

` ~

- _= +\ |

CtrlCtrl

Alt

ASDFGHJKL
Caps

Lock

; :' "

ZXCVBNM
ShiftShift

/ ?
. >

, <Alt Gr

QWERTYUIOP

[ {] }

Tab

Figure 410: Reference image for audio lag

When the audio doesn’t exactly match with the video, we talk about “audio lag”, this has to be accounted for if you

want to have a good rhythm game. In that case, there is a need to compensate for the audio lag, by starting each

sound effect (or music) earlier or later by a well-defined amount of milliseconds.

19.4.1.4 Lag Tests

When it comes to lag, it is really difficult to estimate how the computer will react to our game, so we need a metric

that will tell us what corrections we need to apply.

Such corrections are estimated comparing video and audio to the input: this way we will keep everything synchro-

nized to the player input, making the game feel tighter.

First kind of test is done “video vs. input”, the player has to push a button when something on the screen happens

(like pushing rhythmically with a dot changing color), this way we can account for the video lag, compared to the

input. This means we will obtain a (video+ input) lag measurement.

The second test done is the “audio vs. input” one, the player has to push a button when a sound cue happens on their

speakers/headphones (like pushing rhythmically with a beep), this way we can account for the audio lag, compared

to the input. This way we will obtain a (audio+ input) lag measurement.

By simple math we can account for the “video vs. audio” lag, like follows:

19 DEVELOPING GAME MECHANICS 467



2D Game Development: From Zero To Hero

(video+ input)− (audio+ input)

video+ input− audio− input

video+XXXinput− audio−XXXinput

video− audio

[This section is a work in progress and it will be completed as soon as possible]

19.4.2 Synchronizing with the Music

[This section is a work in progress and it will be completed as soon as possible]

19.4.2.1 Time domain vs. Frequency Domain

When we listen to music, we are essentially streaming a bunch of numbers as the time goes forward, so we can plot

the amplitude of our waveform against time, as follows:

Figure 411: Plotting amplitude against time

In this case, when the time is the “independent variable” that we use to base our work, it’s said we’re working in

time domain.

When we are working with games, we don’t really care about what will happen (music-wise) 5 minutes from now,

instead we care about other things that are happening now. In that case, it may be interesting to work in frequency

domain, which can look something like this:

19 DEVELOPING GAME MECHANICS 468



2D Game Development: From Zero To Hero

Figure 412: Plotting frequency domain

We can switch back and forth between the two domains with “transforms”, the most used is the Fourier Transform,

and one of the most used algorithms to do it on computer is “FFT” (Fast Fourier Transform).

19.4.2.2 The Fast Fourier Transform

[This section is a work in progress and it will be completed as soon as possible]

19.4.2.3 Beat Detection

[This section is a work in progress and it will be completed as soon as possible]

19.5 “Bullet Hell” Style Games

The common definition of a “bullet hell” game is usually the one of a scrolling (usually space-themed) shooter with

a very high level of difficulty and lots of enemy bullets on screen (hence the name).

19.5.1 Bullets

When it comes to this kind of game, it is vital that the enemy bullets are well visible (as stated in the shooters

section in the “game design” chapter), this usually means that their color is brighter and has a lot of contrast with

the background and the sprites on screen.

Figure 413: Example of how to better “highlight” bullets

19 DEVELOPING GAME MECHANICS 469



2D Game Development: From Zero To Hero

Having “evident” enemy bullets makes the situation easier to assess, even when the situation becomes really chaotic.

If you zoom out (or get your reading support farther from your eyes) you can see that the “non-highlighted” bullets

(on the left side) tend to “blend in”, while the “highlighted” (on the right side) version stay visible.

To highlight bullets, you can use “complementary colors”, as shown in the use contrast to your advantage section.

Tip!

Bullet visibility is so important that in many games bullets are the last thing to be drawn

before the player: this means they’re drawn over explosions, other enemies and your

own bullets too.

If you let players lose sight of bullets by drawing graphical effects over them, the game

will feel unfair.

19.5.2 The Ship Hitbox

In the bullet hell genre usually the player ship’s (or character of some kind) hitbox is usually much smaller than the

visible sprite, this makes the game a little bit “easier than it seems”, but at the same time it doesn’t mean that the

game is easy either.

Figure 414: An example of a Bullet Hell ship hitbox

In this image, the ship’s hitbox is limited to the cockpit, some games prefer some area that could be considered the

“ship engine” while others just have a “core” of some sort.

Many games of the genre even make the hitbox a single pixel!

19 DEVELOPING GAME MECHANICS 470



2D Game Development: From Zero To Hero

19.5.3 Screen-clearing bombs

Another mechanic used in bullet hell games are “screen-clearing bombs”: these are used to rid the screen of the

gigantic number of bullets on it, to give the player some breathing room.

In some games bombs may be also used to destroy small enemies and damage bigger ones. The screen clearing

move can happen in many ways: the most common is just making the bullets disappear, but other games prefer

turning the “destroyed bullets” into small collectibles that can give the player points.

19.5.4 Clearing bullets on pattern changes

Some bullet hell games feature multi-phase bosses, where the boss changes attack strategy, and thus their bullet

pattern and speed, at certain points of the fight (usually when reaching a certain amount of health left). This may

create some issues to the player, since the new bullets may cover all “escape routes” willingly left by the previous

bullets, thus making it impossible to not die.

A simple and effective strategy is clearing the screen of the enemy bullets automatically when the boss changes

phase (sometimes transforming the bullets into collectibles for score), this will allow for a quick breather to the

player, as well as a somewhat smooth transition to the new phase.

19.5.5 Find other chances to clear some bullets

Some games find creative ways to clean up a screen cluttered with bullets: for instance some bullets can turn into

collectibles when a pickup is touched by the ship.

Random Trivia!

In ZenoDyne R powerups are real, “physical” objects, and as such they block incoming

bullets, so they can be strategically used as a “shield”, and then pick them up at the

last second.

Some games like to clear the screen (without giving out collectibles) at the beginning of a boss fight, to give a “clean

slate” to start the boss with.

19.5.6 Turn enemy bullets into collectibles at the end of a boss fight

An interesting form of bonus that is often present in bullet hell games is turning all the boss’s bullets on screen into

collectibles at the end of a boss fight.

Since this genre of game gets progressively harder the more bullets are on screen, this small trick rewards players

for being good at dodging, while players who used screen-clearing bombs will have a smaller bonus.

19.5.7 The “Chain Meter”

This is a mechanic used in many bullet hell games: the chain meter is a meter that gains value according to the

number of enemies you kill in a certain amount of time and giving a score multiplier according to it.

19 DEVELOPING GAME MECHANICS 471



2D Game Development: From Zero To Hero

This meter will automatically discharge with time, making it hard to keep up a high score multiplier, adding challenge

to the player and rewarding them for being good at destroying enemies in large numbers fast.

Usually the meter has 5 levels, starting from level 1, when the meter is full, the meter “gains a level” and a score

multiplier is applied accordingly. For instance we can have:

• Level 1: 1x multiplier (normal score)

• Level 2: 2x multiplier (double score for each killed enemy)

• …

• Level 5: 5x multiplier

Tip!

You can code the “discharge” so it is faster at higher levels. This will bring even more

challenge at keeping the level high.

When the player dies, the counter gets completely emptied and thus the multiplier gets reset to 1x.

Tip!

Alternatively, you can halve the level of the meter on player’s death.

19.5.8 Managing the player’s death

It is very common in the “bullet hell” genre to punish the player’s death with a strong cut at the ship’s power.

This has a problem: a player dying may spiral into a fully-fledged game over because the ship is now extremely

underpowered compared to the stage the player died in.

A solution often used in this genre of games is having a dying player’s ship have a random chance of releasing a

random number of powerups and bomb pickups on death, thus allowing the now-weakened player to “regain some

strength” and continue their game.

19.5.9 The Enemy AI

Probably the hardest part to develop in a “bullet hell” style game is the enemy AI and how to make the enemy bullets

form a pattern that is hard but not impossible to dodge.

Since the gameplay is very hard to balance, this genre seldom sees a “procedural game” (an exception that comes

to my mind is “Task force Kampas”, which features procedural levels, but handmade bosses).

A way to make the game feel more fair is programming the AI so it doesn’t shoot “on the way out” of the screen.

Each enemy essentially has 3 phases in its AI:

19 DEVELOPING GAME MECHANICS 472



2D Game Development: From Zero To Hero

1. Enter the screen

2. Fight (usually by shooting a single pattern or a continuous stream of the same pattern)

3. Exit the screen (or die)

When the enemy exits the screen, it should stop shooting and just orderly leave.

Tip!

If your game features enemy turrets, they should stop shooting when they are behind

the player’s ship: the player is already busy enough handling shots from the front.

Shooting from behind makes the game unfair.

19.5.10 Be fair to the player, but also to the computer

The title may be a bit awkward: how can you “be fair to a computer”?

Computers don’t have feelings, but players do. And letting the players kill the enemy before the AI activates takes

away all the challenge from the game itself: the enemies become cannon fodder when the player’s weapons have

enough “power” to instantly kill most of the enemy forces.

So to apply this, you should probably make the enemies invincible until they’re fully on screen: this way the player

sees them and doesn’t kill them beyond the top of the game area.

19.5.11 Inertia

Control is everything in a game where a pixel can be the difference between life and death of your ship/character.

This means that heavy inertia does not play well with the “bullet hell” genre.

This also doesn’t mean that you can’t apply any, just be careful and don’t go overboard. When a player dies because

their ship went too far due to inertia, they will get mad at the game, and by transitive property, at the devs.

19.5.12 Some examples

There are games that make the most of the “bullet hell” mechanics to give player more challenge, or risk/reward

choice.

One game is “Touhou”, which has a “grazing” mechanic: if a bullet slightly grazes (but does not hit) your hitbox, you

will see some sparks and get a bonus in points.

Another title that makes the most of giving the player a “risk vs reward” choice is Ikaruga, with it’s “polarity” me-

chanic. Your ship has two sides: black and white, each side is able to absorb (and so is also immune) to the bullets

of the same color, but also does more damage to the enemies of the opposite color.

19 DEVELOPING GAME MECHANICS 473



2D Game Development: From Zero To Hero

19.6 Match-x Games

19.6.1 Managing and drawing the grid

When it comes to a match-x game, a good data structure for the play field is a matrix.

In most programming languages, a matrix is saved as an “array of arrays”, where you have each element of an array

representing a row, and each element of a row is a tile.

Figure 415: Example of a matrix, saved as “array of arrays”

This is a really nice way to interpret a grid, but at the same time it can open the door to some pitfalls if you’re not

careful.

Many programming languages allow for direct access to an element inside an “array of arrays” by using multiple

access operators (usually the [] operator) in a row.

Usually each element you access with the first [] operator represents the rows, while the second time you use [] you

will access the columns, this will make it so you need to access an element directly as follows: matrix[y][x] where

“y” is the row number and “x” is the column number, which can prove counter-intuitive.

In the previous example, if we want to access the highlighted item, at the third row (indexed at 2), and in the fifth

column (indexed at 4). We have to use matrix[2][4], which is the opposite of what many people are used to when

they think in (x,y) coordinates.

Try to keep visual representation and data structures separated in your mind, to avoid confusion.

19.6.2 Finding and removing Matches

If you’re doing a simple match-x game where you can only match tiles horizontally or vertically, the algorithm to

find matches is quite simple, both conceptually and computationally.

The main idea is dividing the “horizontal matches” from the “vertical” ones. This will allow to simplify the algorithm

and avoid some pitfalls (unless you want to give bonuses for “T-shaped” and “L shaped” matches).

For horizontal matches the idea is running through each row, keeping some variables representing the length of the

match, as well as the color of the current “ongoing” match. As soon as we find a different color, if the length of the

19 DEVELOPING GAME MECHANICS 474



2D Game Development: From Zero To Hero

“ongoing” match is higher than “x” (usually 3), we save the references to the tiles involved for later removal.

Similarly we can do the same algorithm for vertical matches, by running through each column and saving the

matches.

Here is a pseudo-code example:

Listing 132: Finding horizontal matches in a match-3 game

1 function findHorizontalMatches () -> Tile []{

2 in t matchLength = 0;

3 const int minMatchLength = 3;

4 Tile[] matches = new Tile [];

5 for (each row in matrix){

6 Tile lastMatchingTile = nul l ;

7 for (each column in row){

8 Tile currentTile = matrix[row][ column ].tile;

9 i f (currentTile == lastMatchingTile){

10 matchLength = matchLength + 1;

11 }else{

12 i f (matchLength >= minMatchLength){

13 // We need to memorize all the tiles involved in the match

14 for (each tile from matrix[row][column -matchLength] to matrix[row][ column ]){

15 matches.add(tile);

16 }

17 }else{

18 // No matches , reset the counter and set the current tile as last matching

19 matchLength = 1;

20 lastMatchingTile = currentTile;

21 }

22 }

23 // We need to account for the right -hand border corner case

24 i f (column == size(matrix[row])){

25 i f (matchLength >= minMatchLength){

26 // We need to memorize all the tiles involved in the match

27 for (each tile from matrix[row][column -matchLength] to matrix[row][ column ]){

28 matches.add(tile);

29 }

30 }

31 }

32 }

33 }

34 return matches;

35 }

Let’s talk a second about the last rows in the algorithm: they are specifically tailored to address a corner case that

happens when there is a match that ends on the right border of the screen.

If such code was not there, the match number would grow by one, then the for loop would reset everything and we’d

lose such match.

19 DEVELOPING GAME MECHANICS 475



2D Game Development: From Zero To Hero

Similarly, we can make an algorithm that allows for vertical matches to be memorized for later removal:

Listing 133: Finding vertical matches in a match-3 game

1 function findVerticalMatches () -> Tile []{

2 in t matchLength = 0;

3 const int minMatchLength = 3;

4 Tile[] matches = new Tile [];

5 for (each column in matrix){

6 Tile lastMatchingTile = nul l ;

7 for (each row in column){

8 Tile currentTile = matrix[row][ column ].tile;

9 i f (currentTile == lastMatchingTile){

10 matchLength = matchLength + 1;

11 }else{

12 i f (matchLength >= minMatchLength){

13 // We need to memorize all the tiles involved in the match

14 for (each tile from matrix[row -matchLength ][ column] to matrix[row][ column ]){

15 matches.add(tile);

16 }

17 }else{

18 // No matches , reset the counter and set the current tile as last matching

19 matchLength = 1;

20 lastMatchingTile = currentTile;

21 }

22 }

23 // We need to account for the bottom border corner case

24 i f (row == size(matrix[column ])){

25 i f (matchLength >= minMatchLength){

26 // We need to memorize all the tiles involved in the match

27 for (each tile from matrix[row -matchLength ][ column] to matrix[row][ column ]){

28 matches.add(tile);

29 }

30 }

31 }

32 }

33 }

34 return matches;

35 }

Both algorithms run in O(n), where “n” is the number of tiles on the screen.

Now we can proceed to remove every tile that has been memorized as “part of a match”, the quickest way may be

to set such tile to “null” (or an equivalent value for your programming language).

19.6.2.1 Why don’t we delete the matches immediately?

We could, but that would open the door to a pitfall that could be tough to manage: in case of a “T” match, we

would find that the “horizontal matches” algorithm deletes part of said match, and the “vertical matches” algorithm

19 DEVELOPING GAME MECHANICS 476



2D Game Development: From Zero To Hero

wouldn’t be able to complete the “T match”, because the necessary tiles are deleted.

Let’s see the image to understand better:

Figure 416: What happens when deleting a match immediately

As visible from the first image, there is a T-shaped match involving cells 0,1,2 of row 0, cell 1 of row 1 and cell 1 of

row 2.

If we deleted the horizontal match immediately, we would lose the possibility of completing the vertical match

(highlighted in the second image).

Instead we memorize everything first, and then delete all the matches at once, without the risk of losing anything.

19.6.3 Replacing the removed tiles and applying gravity

At this point, it is easy to make the “floating tiles” get into the right position: the hardest part is taking care of the

graphics inbetweening that will give us that “falling effect” that we see in many match-x games.

Here is a possible implementation of the algorithm:

Listing 134: Eliminating matches and preparing the tween table

1 function removeMatches (){

2 for (tile in matches){

3 matrix[tile.y][tile.x] = nul l ;

4 }

5 matches = [];

6 }

7

8 function findFallingTiles () -> Map <Tile , int >{

9 // Our falling tiles list , will be used for tweening

10 Map <Tile , int > falling_tiles = {};

11 // We scroll each column of the board

12 for (each column in matrix){

13 boolean found_space = fa lse ;

14 in t spaceY = 0;

15 // We scroll each row , from bottom to top

16 in t y = number of rows;

19 DEVELOPING GAME MECHANICS 477



2D Game Development: From Zero To Hero

17 while (y > 0){

18 Tile tile = matrix[y][x];

19 i f (found_space){

20 // If the current tile is not a space , bring it to the lowest space

21 i f (tile != nul l ){

22 // Put it in the correct spot

23 matrix[spaceY ][ column] = tile;

24 tile.y = spaceY;

25

26 // Set the old position to empty

27 matrix[column ][y] = nul l ;

28

29 // Set the tween starting position for later

30 falling_tiles[tile] = y;

31

32 // We reset the found_space for next loop

33 found_space = fa lse ;

34 // We need to re-scan this tile (it will be empty , but there may be more

tiles above)

35 y = spaceY;

36

37 // Reset spaceY for next loop

38 spaceY = 0;

39 }

40 }else i f (tile == nul l ){

41 found_space = true

42 // In case we didn't find a space yet , this is the one

43 i f (spaceY == 0){

44 spaceY = y;

45 }

46 }

47 // We go up one tile

48 y = y - 1;

49 }

50 }

51 return falling_tiles;

52 }

We can make use of the table to tween the graphics with our favourite method: the map we used will contain the

starting position of the tween, while the end position will be the position set on the tile itself.

After the graphics tweening, we need to create the new tiles that will go and fill up the holes that have been created

by our matches and moved tiles.

Listing 135: Creating new tiles and preparing another tween table

1 function createNewTiles () -> Map <Tile , int >{

2 // Our falling tiles list , will be used for tweening

3 Map <Tile , int > falling_tiles = {};

4 // We scroll each column of the board

19 DEVELOPING GAME MECHANICS 478



2D Game Development: From Zero To Hero

5 for (each column in matrix){

6 for (each tile in column){

7 i f (tile == nul l ){

8 Tile new_tile = new random Tile;

9 new_tile.y = - 64; // A value that is out of the board

10 matrix[column ][tile] = new_tile;

11

12 // Add this tile to the falling tiles mapping

13 falling_tiles[new_tile] = tile.y;

14 }

15 }

16 }

17 return falling_tiles;

18 }

After creating the tiles and tweening them in place, it will be necessary to check for more matches that have been

created from the falling tiles (and eventually notify some kind of “combo system” to apply a “score multiplier system”

or even an achievement system using the Observer Pattern).

[This section is a work in progress and it will be completed as soon as possible]

19.7 Cutscenes

When you want to advance your storyline, a great tool is surely the undervalued cutscene. The game temporarily

limits its interactivity and becomes more “movie-like”, making the storyline go forward. Cutscenes can be scripted

or just true video files; in this chapter we will analyze the difference between the two, advantages and disadvantages

of both and how to implement each one, from a high-level perspective.

19.7.1 Videos

The easiest way to implement cutscenes in most engines and frameworks, is to use videos. Many frameworks have

native support for reproducing multimedia files with just a few lines of code, which makes this the preferred choice

when it comes to the code.

The bad thing is that videos are a “static” format. They have their own resolution, their own compression and

characteristics, this means that when a video is presented at a higher resolution that is own native one, we’re bound

to have artifacts due to upscaling.

[This section is a work in progress and it will be completed as soon as possible]

19.7.2 Scripted Cutscenes

[This section is a work in progress and it will be completed as soon as possible]

19 DEVELOPING GAME MECHANICS 479



Part 6: Refining your game



2D Game Development: From Zero To Hero

20 Balancing Your Game

The trick to balance is to not make sacrificing important things become the

norm

Simon Sinek

An imbalanced game is a frustrating game, and most of the time balancing a game is one of the toughest challenges

a game developer/designer can find themselves to have to face.

Let’s talk about some principles and guidelines that can help you balancing your game and keep your players

challenged but not frustrated.

20.1 Do not annoy the player

The “master principle” everyone should follow (in my humble opinion) is “do not, under any circumstance, annoy

the player”.

You should not trade the “fun” of your game for any other mechanic (like showing an advertisement to allow them

to continue playing): that is equivalent to betraying your player, makes the game feel unfair and un-fun.

Here are some examples of mechanics that will surely annoy the player:

• Sudden spikes in difficulty: when you have a sudden spike in difficulty, the player feels stumped and the

game tends to lose its charm, you are “interrupting the flow” of the game by placing an arbitrary hurdle on

your players’ road;

• Off-screen instant-death traps: having something deadly that pops out from off-screen and kills the player

is unfair and will make your players scream in agony and vexation, if you want to place some obstacles that

pop from off-screen you should “telegraph” them. “Telegraphing” is a technique where you send a warning

signal to the player that danger is coming. For instance a huge laser that instantly kills you should be preceded

by a couple seconds by a yellow “!” signal on the right side of the screen, where the laser is due to strike.

Another way to telegraph said laser would be to illuminate the part of the screen that is about to be hit, like

the light of the laser is coming up;

• Arbitrary invisible time limits: If you suddenly interrupt the player’s game with a “time up” and you have

no countdown on the screen, the player will get frustrated, guaranteed;

• Taking control away from the player: Not allowing the player to move (getting blocked by an enemy and

killed) or just not allowing the player to adjust their jump mid-air is a surefire way to make them not play your

game anymore.

20.2 Favour the player when possible

In the process of balancing a game, as a game developer/designer you will surely find yourself in front of the following

decision time and time again:

Shall I favour the game’s precision or should I give some leeway to the player?

20 BALANCING YOUR GAME 481



2D Game Development: From Zero To Hero

The answer is the latter 99% of the time.

Giving some leeway to the player, for instance by having a more generous hit-box that allows you to stay alive even

if a bullet grazes your character makes the game seem more “fair”.

There are infinite ways to make a game challenging without having to force the player into accepting very precise

hit-boxes or extremely tight gameplay.

20.3 Difficulty curves

When designing our game, it may be useful (sometimes mandatory) to have a high-level view of how our game’s

difficulty will evolve as the game itself is played. If we take a Cartesian plane and define time as the x axis, while

the “perceived difficulty” is plotted on the y axis, we would obtain a difficulty curve, a high-level representation

of how difficulty evolves as the game is played.

Knowing some basic difficulty curves, as well as their pros and cons, may give you an idea of how you want to build

and balance your game. This section will be heavy on charts, so be prepared!

20.3.1 Simple Lines

Let’s start with simple lines, they can be straight lines or simple curves that don’t feature any waviness or wobbliness.

These are usually the simplest to learn but that doesn’t mean they are free from complicated drawbacks. Let’s check

some out.

20.3.2 Flat Line

The first curve is the “flat line”, which is a simple horizontal line that spans the whole playtime. It can’t get simpler

than that.

Difficulty

Time

Hard

Medium

Easy

Figure 417: A Flat line difficulty curve

When the player selects a difficulty level, the difficulty stays around that value (with no real perceivable change)

for the entire playthrough. That means that there is no “evolution” to take care of and no long-term balancing to

perform.

20 BALANCING YOUR GAME 482



2D Game Development: From Zero To Hero

This curve also represents a way of balancing your game that gets boring rather quickly, since the player gets better

at the game as time passes, but the game doesn’t “follow them” by giving them a higher challenge.

20.3.2.1 Linear Increase

To solve the issue of the flat line, you can add a linear increase to your difficulty in an effort to “keep up” with the

player.

Difficulty

Time

Figure 418: A linearly increasing difficulty curve

This curve is usually easy to manage, giving a lot of control over the initial difficulty and its evolution. The player is

challenged for longer periods of time, since the game becomes more difficult the further the player plays it.

The biggest drawback of this kind of curve is its predictability: after a while, a somewhat “expert” player can predict

“by feel” the upcoming challenges and prepare as a consequence, thus “squashing” the final part of the curve.

Difficulty

Time

Player learns to "predict"
how difficulty changes Perceived difficulty

decreases

Figure 419: As the player learns to predict, the difficulty curve changes from our design

20.3.2.2 Logarithmic Line

The logarithmic line is usually presented as a “guide” for more advanced types of curves. This is due to the fact that

it has some major issues.

20 BALANCING YOUR GAME 483



2D Game Development: From Zero To Hero

Difficulty

Time

Figure 420: A Logarithmic difficulty curve

The beginning of the game has a steep learning curve, which eases up as the game goes on. This means that the

game is really hard at the beginning but the challenge dies down towards the end, which can make for a game very

difficult to learn but not much more.

This can be a good curve if you want to “test the might and patience” of your players, but if not paired with a different

approach in the late game, it may end up being boring in the long run.

20.3.2.3 Exponential Line

The complete opposite of the logarithmic line is the exponential one. This has a lot more use in game design that

the previous example.

Difficulty

Time

Figure 421: An exponential difficulty curve

The exponential difficulty curve gives the player a very relaxed beginning as well as a late game that can get really

hard really fast (to the point that it can be too hard). This curve is the literal definition of a game that is “easy to

learn but hard to master”.

20 BALANCING YOUR GAME 484



2D Game Development: From Zero To Hero

20.3.3 Wave patterns

The difficulty curves that we’ve seen so far have all one thing in common: they are simple and feature no real “lack

of predictability”, which can make a game a bit boring in the long run. Not because it’s not challenging, but because

it’s predictable.

20.3.3.1 Linearly Increasing wave

Adding some waviness to the linearly increasing line can add some spice to the game very easily.

Difficulty

Time

Figure 422: A linearly increasing wavy difficulty curve

This is a very efficient way of working, since it makes things more interesting, but if not implemented correctly it

can lead to very high difficulty during the late game, since the “wave” may compound with an already high difficulty

level.

20.3.3.2 Logarithmically Increasing wave

To try and fix the issues from the linearly increasing wave pattern, we may want to tie our difficulty to a logarithmic

line.

20 BALANCING YOUR GAME 485



2D Game Development: From Zero To Hero

Difficulty

Time

Figure 423: A Logarithmically increasing wavy difficulty curve

This kind of difficulty curve tends to “squash” the challenge towards the mid-to-late game, thus making the game a

bit less difficult if the “wave” compounds with an already high difficulty level.

As a drawback, this curve may feel more “predictable” towards the late game, since the difficulty tends to get

very “horizontal” towards the end; the wavy pattern helps keeping the predictability at bay, thus lengthening the

enjoyability of the game.

20.3.4 Interval Patterns

For games that involve some random generation, like roguelites, we may want to “clamp” the difficulty between a

“minimum” and a “maximum” but still allow for “runs” that feel different in difficulty from each other.

In this section we will show only wavy patterns, to exemplify the most “difficult to design” patterns, butt all patterns

apply to simple lines too.

20.3.4.1 Simple Interval

The simplest way to implement an interval pattern is just defining a minimum and a maximum difficulty and setting

the difficulty in such interval.

20 BALANCING YOUR GAME 486



2D Game Development: From Zero To Hero

Difficulty

Time

Figure 424: A simple wavy difficulty interval

This pattern is good for unpredictable challenges, but it is so unpredictable that you have no control over the initial

difficulty either. This means that you may have a run of your game starting way too hard, while the next one may

end up being very easy.

20.3.4.2 Widening Interval

To solve the lack of control over the initial difficulty, you may want to shape your interval like a letter “V” (just on its

side).

Difficulty

Time

Figure 425: A widening and wavy difficulty interval

The widening interval allows you to have almost total control over the initial difficulty, while still keeping an unpre-

dictable challenge in the mid and late game. The fact that the pattern widens towards the late game may end up

being a drawback in some situations, since the game may have a really easy or really hard “ending”. This makes

for a sometimes inconsistent experience.

20 BALANCING YOUR GAME 487



2D Game Development: From Zero To Hero

20.3.4.3 Widening Interval with Logarithmic trend

When things tend to get out of control towards the late game, logarithmic curves come to our rescue and this is one

of those times.

Difficulty

Time

Figure 426: A widening wavy difficulty interval with a logarithmic trend

By tying our widening interval to a logarithmic line we have a way to better control how the game’s difficulty evolves

in the mid-to-late game. This gives the game’s difficulty an “increasing trend” and coupled with a wavy difficulty

line it can still be unpredictable enough to be enjoyable.

Such control doesn’t come cheap though, since having so many things to control (the initial difficulty level, how

much the curve widens, how fast things evolve) can be really difficult.

20.3.5 This is not everything

The difficulty curves that we’ve seen so far are definitely not the only ones that exist in video game development.

You can mix and match until you reach a result that may look fun (in theory) and appeal to the player base that you

have chosen.

Here we take a look at some more elements and curves that don’t fit the previous description.

20.3.5.1 Sawtooth pattern

Every time we introduce a new mechanic, it may be useful and fun to let the player make large use of it, thus making

the game a bit easier.

20 BALANCING YOUR GAME 488



2D Game Development: From Zero To Hero

Difficulty

Time

New Mechanic
Introduced

Figure 427: A sawtooth difficulty curve

This gives our curve a sawtooth-like shape, where the game gets slightly easier every time a new mechanic (like a

powerup, or a tool) gets introduced, just to climb higher than the previous maximum. This can give the player an

idea of “a reward for doing something difficult”, and such reward is the new mechanic.

20.3.5.2 What not to do

When designing a video game, there are at least as many things you should as the ones you may want to do. One

of the things you shouldn’t do at all is adding “difficulty spikes” to your gameplay.

Difficulty

Time

Figure 428: Difficulty spikes are not good

Difficulty spikes don’t look good in graphs and don’t make a game challenging or fun, they interrupt the natural flow

of the game and end up frustrating the player. This may include an extremely precise jump in a 2D platformer just

after a series of simple levels (even worse if such jump if far from the last checkpoint), or a very difficult boss that

has no real place being there it is (difficulty-wise).

20 BALANCING YOUR GAME 489



2D Game Development: From Zero To Hero

Another thing that you may want to avoid is making the game easier for experts: this may include adding a secret

stash of collectibles (like powerups or skill points) in a place where only expert (or very very good) players can reach.

Furthermore, you should avoid punishing players who “don’t play that well” further than the minimum necessary:

losing a life is already a strong “punishment”, if you make them lose all their gear without possibility of recovery

(this goes for skills too), your game will be put on the shelf by the majority of your player base.

Avoid letting players “skip learning skills”, since they will find themselves in a world of trouble as soon as such skill

is necessary to continue the game. The player will feel lost at first, then think that the game glitched out and only

then (if they didn’t uninstall the game already) they make backtrack to look for something they missed.

Try to avoid overloading the players with information: when dealing with a tutorial that lasts longer than it should or

that presents way too much information at once, players will lose focus and will tend to skip steps just to “get over

it”.

20.3.5.3 Beyond difficulty

Difficulty is not everything in a game: a game may greatly enjoy from other elements, like comedy or just the

feeling of relax that may come from a farming game. Some players really enjoy escaping the hectic city life to lose

themselves in the rhythm of nature (although it is a simplified an virtual version of it).

Other games benefit from collectathon traits: deck-building games are a prime example. You start with a basic

“deck of cards” which have certain powers, as you play the game more cards unlock and soon enough the player is

enjoying the feel of strategy that comes from “building the perfect deck”.

20.4 Economy

Some games (not only MMOs) feature an “economy” side to their gameplay: this can prove to be something really

difficult to balance without creating a virtual financial disaster.

This section will give you some basics to get things right.

20.4.1 Supply and Demand

Every economy is (at least in part) governed by the laws of supply and demand, which can be graphically represented

in the following graph:

20 BALANCING YOUR GAME 490



2D Game Development: From Zero To Hero

Supply Demand
Price

Quantity

Figure 429: A simplified vision of supply and demand

Note!

This is an oversimplification of how the market (and the economy in general) works,

just enough to keep you far away from the most common issues.

We can get some takeaways from such graph:

• If the demand is low (noone wants the product), suppliers will try to “boost it” by lowering prices;

• If the demand is high (many want the product), suppliers will try to earn more by boosting prices;

• If the supply is low (the product is rare), people will value it more (the price will be higher);

• If the supply is high (the product is really common), people will value it less (paying it less).

This also shows that artificially keeping the supply low will make the product feel more valuable, allowing to ask for

higher prices.

Another thing to remember: money is a good too, and is subject to the same laws.

20.4.2 Money sources and sinks

Any artificial economy is usually composed by 2 “components”:

• Money Sources: they create money from nothing, these can be quest givers, treasure chests and the like;

• Money Sinks: places that “destroy money”, these are NPC salesmen at the market (that create items from

nothing), fortune machines, anything that takes or exchanges money for something else.

Sources and sinks are extremely important and should be carefully balanced, since an imbalance in the quantity of

money created and destroyed can have catastrophic effects. Among those, uncontrolled inflation and deflation are

20 BALANCING YOUR GAME 491



2D Game Development: From Zero To Hero

the most prominent.

20.4.3 Inflation

Inflation is a phenomenon where prices usually rise uncontrollably: this means that money “lost its value”.

This is usually due to the massive presence of money in the economy, so in a source/sink view, the money sources

emit much more money than what the sinks can consume.

As a consequence fixed-price operations (like if you put “repair a weapon” at a fixed 50 golds) become incredibly

cheap, while products in the market become prohibitly expensive.

In a supply/demand perspective, there is big supply of money which triggers little demand for it (since it’s so com-

mon), while there is a big demand for products (thus raising the prices).

This may end with people having loads of money and noone accepting them for trades. Bartering may arise as an

alternative to money.

20.4.4 Deflation

Deflation is a phenomenon where prices usually have a drop: this means that money has “too much value”.

This has the exact opposite causes of inflation: there is too little money in the economy, so the money sources don’t

emit enough money and there are too many sinks that can consume it.

As a consequence fixed-price operations become extremely expensive (if you have 100 gold, paying 50 gold to repair

a weapon may seem a lot), while products in the market become extremely cheap.

Again, in a supply/demand perspective, there is a low supply of money (making it more valuable), while demand is

really high.

This can trigger “money hoarding” thus freezing the economy, sometimes bartering can arise as an alternative way

to exchange goods without involving the “precious precious money”. Some operations that require a minimum

amount of money may even get locked because of the little amount of money circulating.

20.5 A primer on Cheating

Cheating is the act of fraudulently altering the game’s mechanics in advantage of the player, performed by the

players themselves.

It is something that many game developers and designers have to battle against, so here are some suggestions and

tips to limit cheating in your game.

This section will just give a primer on the types of cheating we can find, since knowledge of something is the best

weapon against it; so questions like “how to cheat” (or “how to hack”) are outside the scope of this book.

20 BALANCING YOUR GAME 492



2D Game Development: From Zero To Hero

20.5.1 Information-based cheating

Information-based cheats are all those cheats that rely additional information to the cheater, such information can

give a sizeable advantage. A possible example is a cheat that removes the so-called “Fog of War” in a real-time strat-

egy (RTS) game: having possibility of seeing all the enemy units allows the cheater to put up some countermeasures

against the units that are being created.

These cheats include also x-ray hacks, all cheats that invalidate invisibility (as the server or peer would still need to

transmit the coordinates of the hidden unit) and anything that can show information that is not meant to be shown

to the user.

A possible solution is for the game to just “not transmit” the data, making the cheat useless, but sometimes that is

just not possible.

20.5.2 Mechanics-based cheating

Another category of cheats is comprised of all those hacks that alter the game mechanics themselves, like killing

all the players on the map. These kind of cheats are usually made possible by exploits or just because the cheater

owns the server people are playing on.

These kinds of cheats can easily hinder the playability of a game, or even make it outright unplayable.

A possible solution to these cheats would be using a cheat-detection program (which would start a “cat and mouse”

game, where hacks are updated to avoid detection, and detection programs are updated to detect new hacks) and

also inserting some client-side verification of server commands (in case the server contains the “authoritative game

state”); for instance if all players are killed at the same time, the clients could flag the server as possibly cheating.

20.5.3 Man-in-the-middle

This attack is well known in the networking environment: an external machine is used to route and intercept all

the traffic directed to the game. This can be a real issue since the attacking program is “outside of the game

environment”, making nearly all cheat-detection programs useless.

A man-in-the-middle attack can also be used to further exploit the game and find new vulnerabilities.

A possible solution could be completely encrypting all the game’s traffic, but that will be an issue since encryption

takes away precious CPU cycles, and this could lead to an hindered gaming experience.

20.5.4 Low-level exploits

These kind of attacks don’t target the game itself, but tend to attack the technology that the game is using: they

can range from brute force attacks (like using Denial of Service attacks) to more articulated actions that may break

the equilibrium of the game.

This is not your game’s fault: it’s a problem with the technology stack used, the libraries or even the fact that the

software is running on a computer. These exploits are really engrained into computers themselves, but they can still

be mitigated with a little bit of care and attention.

20 BALANCING YOUR GAME 493



2D Game Development: From Zero To Hero

20.6 How cheating influences gameplay and enjoyability

20.6.1 Single Player

Cheating in single player is an act that doesn’t usually do a massive amount of damage, and such damage is usually

confined inside the single “single-player” game.

Playing outside of the rules can be really fun (that’s one of the principles the “glitch hunters” love: doing something

outside of what another person imposed them), for instance some people cheat in games to bring somemayhem into

their gameplay, or they use cheats implemented inside the game itself for a comedic factor (like the omnipresent

“giant head” cheat).

Sometimes cheating happens because the game is unbalanced and players get annoyed at it, an instance of this

happening could be when a game has a great story and gameplay but there is a boss that is so hard the game just

stops there. You want to see how the story continues, but the game has gone so much out of balance you are willing

to break its own mechanics to be able to continue it.

In this case the approach you should have is rebalancing the game, instead of limiting your players.

When it comes to cheat prevention, usually the first order of action is giving the game the ability to “check the

validity” of an instruction.

For instance if a player character has its coordinates at (5,5) on frame n and coordinates at (1500, 5) at frame n+1,

there is something fishy going on, since maybe the player can only move 500 pixels per second (while it moved 995

in one frame: 1
60 of a second).

Such checks will slow down the processing, but will allow you to put a limit to cheating, possibly intervening in an

active way, by resetting the space walked to the maximum amount possible in one frame, although this could give

some issues with slower computers and variable time steps.

20.6.2 Multiplayer

When it comes to multiplayer and “leaderboards”, cheating can be create some major damage to the game’s enjoy-

ability. It is honestly disheartening seeing a level that has been completed in 0 seconds on top of the leaderboard,

totally unreachable with normal gameplay.

When competitive gameplay comes into the picture, playing against a cheater is frustrating and maddening, you

feel powerless, the game is not fun and sometimes it even feels “broken”, even though it is stable and playable.

Here we will distinguish between the two main forms of multiplayer: Peer-to-peer gameplay and dedicated servers.

20.6.2.1 P2P

Peer-to-peer multiplayer is the economically cheapest and easiest way to implement multiplayer, two or more com-

puters (or consoles) are on “the same level” and communicate directly with each other, without a tertiary server in

the middle.

20 BALANCING YOUR GAME 494



2D Game Development: From Zero To Hero

Figure 430: Example of a P2P connection

The main difficulty in preventing cheating is that there is no “authoritative game state”, the program cannot know

if either player is cheating besides having an array of “possible actions”, like in single player, but with the added

difficulty of network lag.

Figure 431: Two cheaters meet in P2P

Giving such “authoritative game state” to either of the players is not a good idea, because that way they would be

able to cheat themselves and since they’re the “game master”, everything they do would be accepted.

20 BALANCING YOUR GAME 495



2D Game Development: From Zero To Hero

Figure 432: What would happen if one of the Peers had the authoritative game state

This is also the reason why many games that make use of P2P connections have implementations of anti-cheat

systems that are shoddy at best.

20.6.2.2 Dedicated Servers

Dedicated servers is usually the best way to prevent cheating, a tertiary server is added to the mix, and said server

is either controlled by the game creators or uses a software specifically tailored to work as a “multiplayer server”.

Figure 433: Example of a dedicated server

Such server contains the authoritative game state and decides what is right and what is wrong, or either what is

possible and not possible.

20 BALANCING YOUR GAME 496



2D Game Development: From Zero To Hero

Figure 434: Two cheaters vs. Dedicated server

Usually a dedicated server software has been specifically made to limit cheating, as well as offering better perfor-

mance than the P2P counterpart (it doesn’t have to run graphics, for instance).

If a consistent leaderboard and lack of cheating is important (for instance in a heavily competitive multiplayer game),

you should probably choose this option.

This section assumes that the game is using a third-party game server, and none of the players has direct access to

said server, as this would enable cheating on the owner’s part.

20.7 Cheating protection

Protecting your game, leaderboards and community from cheating is hard and there are many ways to prevent it.

Dedicated servers are one of the many ways, cheat engine detection (there are many commercial solutions) but

none of these solutions is cheater-proof.

If your game has 1 million players (I hope it does!) and there is a 0.0001% probability of people cheating at it, you

have a statistical certainty that there will be a cheater among them. Cheating will happen and usually cannot be

completely prevented, but that shouldn’t discourage you.

It should be hard to cheat at a game but, most of all, it should be harder to do it undetected.

So there are some other tools in your toolbox that you can use, for instance you can save a “lightweight” replay of

the game session (if your game has a leaderboard), that way anyone who wants to enter the leaderboard will also

send a replay of their gaming session.

This has multiple advantages: from the community side you have players can “learn tricks from the best”, but also

can report who evidently cheats, because the replay would show it.

Usually these “lightweight” replays are done by recording the position of the player and its state, as well as the

initial state of the game. Add the fact that the game is deterministic and you have the equivalent of a recording of

the gameplay.

20 BALANCING YOUR GAME 497



2D Game Development: From Zero To Hero

Even better, you can record the inputs of the player and see if “a simulation” done with those inputs validates against

the positions and actions recorded on the replay: this way if someone modified their game to make themselves

invincible or faster, the simulation would fail and the replay wouldn’t validate.

Random Trivia!

It was recently discovered that the game “Trackmania” records inputs as well as the

position of the vehicle, this allows the game to validate the replays against the most

common forms of cheating

We can be sure that the simulation would be equal to a video because a game (as well as any program) is deter-

ministic: given the same initial state and inputs, the game will always end up the same way. This is true even if

random numbers are involved (that is why they’re called “pseudorandom”), see “random numbers on computers

are not really random”.

20.7.1 Debug Mode vs Release Mode

Sometimes it may prove useful (and sometimes it is just plain necessary) to have some “cheats” to use as “shortcuts”

while doing some development tasks.

Some of these give you invulnerability to make sure that you can test the balance of the weapons without worrying

about dying in the harder stages, some other times you need a “level skip code” to quickly get to later levels when

you have made incompatible edits to the save file format.

When using these codes it is vital to have a build flag to distinguish between a “release build” and a “debug build”,

this way it is possible to completely strip out the debug code from the build, thus “reducing the attack surface”: you

can’t abuse code that is not there.

This is more difficult when dedicated servers are involved, since it would be necessary to have 2 copies of the server:

a “release build” with all the debug code stripped out, and a “debug build” that allows for “debug cheats”. Problem is

that not having such “cheats” could make moderators’ work a lot harder (let’s consider cases like Minecraft servers,

where administrators need to be able to fly around to be able to scout possible cheaters “by eye”).

20.8 Some common exploits

In this section we will take a look at some really common exploits that can be used to break the balance of a game.

By knowing these kinds of exploits you will be able to plan ahead and avoid annoying (or embarrassing) situations.

20.8.1 Integer Under/Overflow

This is probably one of the most common exploits that you can find in games. Computers have limited memory,

thus they have a limit on the numbers that can be represented: what happens when such limit is exceeded?

It might be useful to remember the section talking about two’s complement.

20 BALANCING YOUR GAME 498



2D Game Development: From Zero To Hero

20.8.1.1 How the attack works

Let’s imagine a simple management game: you can earn money from various activities and you spend money on

staff wages. There is a button that allows you to increase staff wages by 1 unit. Staff wages are saved using (for

some reason) only 3 binary digits.

The game calculates your monthly earnings as follows:

earnings = income − wages

Now that we have set up the environment, let’s see how it can be broken.

Let’s assume we have only one staff member how is paid 3 units per month. What would happen if we paid them

another unit? In decimal it would be easy: 3 + 1 = 4 but in binary it is a lot more complicated:

011 + 001 = 100

If we look at the previous table, that’s the two’s complement representation of−4! By raising the staff wages we’ve

ended up with the staff paying us! This is called an “integer overflow”.

This can work both ways: if we subtracted 1 from−4 in binary, we would go back to+3. This is what happens when

an integer “underflows”.

Random Trivia!

There is a story about the first “Civilization” game having an integer underflow bug

(called “Nuclear Gandhi”): a civilization’s “aggression value” was saved as an 8-bit un-

signed integer. Gandhi had its initial aggression score set as 1 and when India achieved

democracy, such score is lowered by 2 points, causing the “aggression value” to un-

derflow to 255, making Gandhi the most aggressive leader in the game.

This is actually not true, but “Nuclear Gandhi” was included as an Easter egg in the

following games, as a joke.

20.8.2 Repeat attacks

This affects for the most part multiplayer games that make use of the internet. Let’s imagine the following situation:

you have an online game that follows this procedure:

1. You accept a mission;

2. The mission is added to your journal;

3. You perform the mission’s tasks;

4. You turn in the mission;

5. You receive experience and gold from the mission;

20 BALANCING YOUR GAME 499



2D Game Development: From Zero To Hero

6. The mission is removed from your journal.

Between points 4 and 5 there is a synchronization effort between your client and the dedicated server: if the server

doesn’t confirm that the mission is really turned in, no experience is received and the mission stays in the journal,

ready to turn in.

What if there was no control (on the server side) for turning in the mission more than once? This is what repeat

attacks exploit.

In our example, you would get a program that throttles the connection to the point that the network code of the

game is suffering heavily, but doesn’t disconnect. At this point you just turn in the mission a lot of times (and such

mission will stay in the journal because the client didn’t receive an answer from the server yet). Since the server

doesn’t have a check for multiple mission turn-ins, it will return orders to the client for adding more experience and

gold.

20 BALANCING YOUR GAME 500



2D Game Development: From Zero To Hero

21 Accessibility in video games

Accessible design is good design - it benefits people who don’t have

disabilities as well as people who do. Accessibility is all about removing

barriers and providing the benefits of technology for everyone.

Steve Ballmer

21.1 What accessibility is and what it is not

Let’s start with what accessibility is not: accessibility is not making a game playable by people with disabilities. To

be precise, it is not only that.

Accessibility is an inclusive practice where you make sure there are no (or at least the fewest number of) barriers

that prevent someone with interacting with your game.

Many times “good design” and “customization options” bleed into “accessibility” too, as we can see from the sections

below.

21.2 UI and HUD Scaling

This is one of those “customization options” that bleeds well into “accessibility”. Some people may like smaller

Heads-Up Displays (HUDs) and general UI, to give more space to gameplay, while others may want to have bigger

UI because of some visual impairment.

UI and HUD scaling is a great customization for any player, not only the ones who suffer from some kind of impairment

or disability.

21.3 Subtitles

This feature is really useful if you can’t afford to keep the volume too high without disturbing someone (and don’t

have headphones). Another great use for subtitles is to expand the game’s audience to non-native English speakers,

who may have a bit of trouble with pronunciation.

Some games further expand their demographic by using speech in a certain language and enabling support for subti-

tles in another language, other times it can be used as a story ploy: in Rayman 2 the characters speak “Raymanian”

(sometimes called Wandayē), a fantasy language which is subtitled in the language of choice.

Another use of subtitles is to describe world sounds for hearing-impaired users.

21.4 Mappable Buttons

This is another one of those “customization options” that falls into the “accessibility features” too. Giving the player

the possibility of changing their button mapping is essential to guarantee that a larger number of players is able to

enjoy the game you created.

21 ACCESSIBILITY IN VIDEO GAMES 501



2D Game Development: From Zero To Hero

Modern engines usually include input handlers that already support mappable buttons, you just need to “transpose”

such functionality in your own game by creating the right menus.

21.5 Button Toggling

In some games, a player may have necessity to keep a button pressed to perform a certain action (like sprinting).

Some games allow buttons to work as “toggles”, so one press enables sprinting, another press disables it. This can

be both a functionality for “comfort” as well as a feature that allows the game to be more accessible to players with

difficulty when it comes to muscle control.

21.6 Dyslexia

One often overlooked issue when it comes to text is dyslexia. In this small section we will take a quick look at some

accessibility options that can help with this problem.

21.6.1 Text Spacing

A good start would be having the possibility of customizing the space between lines of text: this way the possibility

of mixing up different lines of text is greatly reduced. This also helps other people who prefer a smaller UI, but at

the same time find difficulty in reading very “condensed” text.

21.6.2 Fonts

Another great tool could be font customization: there are specialty fonts dedicated to greatly reduce letter-swapping

and confusion, thanks to letters that have a thicker bottom (to give a clearer baseline) and different letter shapes.

One of such specialty fonts is “OpenDyslexic” (available at https://www.opendyslexic.org/), which is free to use,

being licensed under the SIL-OFL license.

21.7 “Slow Mode”

Having an option that allows to slow down the game is an authentic boon for anyone who wants to enjoy a video

game but has some issues when it comes to reaction time or muscle control, but this makes the gamemore enjoyable

for audiences who may not appreciate a high level of challenge but still want to play your game.

21.8 Colorblind mode

When it comes to color, everyone sees colors differently but others may not be able to distinguish between certain

colors at all: that’s where a colorblind mode comes into play.

Having the game palette adapt so it’s easier to distinguish colors for colorblind users is definitely one of those

accessibility options that may require a bit more work but could make some players really happy too.

21 ACCESSIBILITY IN VIDEO GAMES 502

https://www.opendyslexic.org/


2D Game Development: From Zero To Hero

21.9 No Flashing Lights

When it comes to photosensitivity, (very dangerous) seizures are not the only outcome possible: some people may

get really strong headaches from seeing intense visual effects and flashing lights.

Having an option to disable or tone down flashing lights and intense (sometimes even overbearing) visual effects

can make a game a lot more enjoyable to someone who has some kind of sensitivity to light.

21.10 No motion blur

There are some people that like motion blur, some who don’t and some who can’t physically stand it: making motion

blur a toggle can be both a quality of life improvement as well as something that can help people who have issues

with sight.

Making it a slider so the player can “dial it in” is a great thing too: it adds a level of customization, as well as being

a performance settings too (motion blur can slow down the game on older platforms).

21.11 Reduced Motion

Some people may be particularly sensitive to cameras or texture patterns that involve lots of motion, this could

cause discomfort in the player or even full-blown motion sickness. Having an option to reduce motion (like avoiding

certain camera rotation mechanics or making some patterns static) can really help users enjoy your game without

having the game “hurt” them.

Random Trivia!

Sonic 4: Episode 2 has a level (precisely “Death Egg. Mk. II”) which has a really cool

mechanic where the camera follows the ground you’re riding on, rotating with it. This

is a really cool effect, but this is one of the effects that could cause motion sickness. A

trigger to disable the camera rotation (and maybe take a slight hit in “realism”) could

help a lot, even though it could introduce some control scheme challenges.

21.12 Assisted Gameplay

Having an “aim assist” option that allows for the crosshair to “snap to an enemy” when it is “close enough” it’s great

for people who have problems with coordination, but it’s also great for players who prefer to play with a controller

instead of a mouse.

Any kind of “assisted gameplay” can help both people with and without disabilities.

21.13 Controller Support

Supporting only one certain type of “control device” is not great for accessibility; some people may prefer or need

a controller of some sort, be it a gamepad or something more sophisticated, having support for “alternative inputs”

is always a great idea.

21 ACCESSIBILITY IN VIDEO GAMES 503



2D Game Development: From Zero To Hero

21.14 Some special cases

A special mention goes to the VR game “Moss”, where a character (named Quill) communicates both emotionally

and gives clues on the puzzles using the American Sign Language (ASL).

[Do you know more about this? You can contribute, this book is open source!]

21 ACCESSIBILITY IN VIDEO GAMES 504



2D Game Development: From Zero To Hero

22 Testing your game

The bitterness of poor quality remains long after the sweetness of meeting

the schedule has been forgotten.

Anonymous

When you want to assure the quality of your product, you need to test it. Testing will be probably be the bane of

your existence as a developer, but it will also help you finding bugs and ensure that they don’t come back.

Remember that you should be the one catching bugs, or your players will do that for you (and it won’t be pretty).

Let’s take a deep dive into the world of testing!

22.1 When to test

22.1.1 Testing “as an afterthought”

Most of the time, testing is left “as an afterthought”, something that comes last, or at least something that is done

way too late in the development process.

Testing is made difficult because the code is all interconnected, making it really hard (if not impossible) to separate

and test each component.

Leaving testing as an afterthought is not a good idea, let’s see the alternatives.

22.1.2 Test-Driven Development

Some swear by the “Test-Driven Development” (from now on “TDD”) approach. TDD consists in developing the test

before writing a single line of code, then after the test is ready, create the code that solves that test.

That way the test will “drive us” to the solution of the problem. At least that’s what it is supposed to do.

As a critique to the TDD approach, I personally think that people will end up trying to “solve the test”, instead of

“solving the problem”. This means that sub-optimal solutions may be adopted, and “edge cases” will be missed.

22.1.3 The “Design to test” approach

To get the best of both worlds, we need to work a bit more on our software design, by designing by having its testing

in mind: functions should be self-contained, the weakest amount of coupling should be present (if any) and it should

be possible to mock elements easily.

Paying attention and going the extra mile to create an architecture that is easy to test will reward you in the long

run.

22.1.4 You won’t be able to test EVERYTHING

Before trying to test anything, remember that testing is hard. You won’t be able to test everything, and the situation

will be worse when you will be in a time crunch to deliver your game.

22 TESTING YOUR GAME 505



2D Game Development: From Zero To Hero

Remember that hacking is not always a bad thing, sometimes cutting corners will get your game shipped and having

a solid (and tested) basis will help you with that too.

22.2 Mocking

Before talking about the nitty-gritty of testing, we need to talk about “Mocking”.

Mocking is a procedure that is usually performed during tests, that substitutes (in-place) an object or function with

a so-called “mock”. A mock is something designed to have no real logic, and just return a pre-defined result, or just

have a pre-defined, very simple, behaviour.

Mocking will help you “detach” objects that depend on each other, substituting such dependencies with “puppets”

(the mock objects) that behave consistently and are not affected by bugs that may be present in the object that you

are mocking.

22.3 Types of testing

Let’s take a look at how we can test our game, because (as with many things in life), testing can be more than meets

the eye. In this section we will talk about both manual and automated testing, the difference between them and

what method suits what situation.

22.3.1 Automated Testing

Automated testing is usually performed when new code is pushed to the repository, or on-demand. Automated

testing makes use of a “test suite”: a bunch of tests that are run on the game’s elements to test their correctness.

Here we can see a small example of a simple function, along with a test, in pseudo-code:

1 function sum_two_numbers(a, b):

2 // This function takes two numbers and sums them

3 return a + b

4

5 function test_sum ():

6 // This function tests the sum function

7 int result = sum_two_numbers (2, 2)

8 assert result == 4

As we can see, the test makes use of the “assert” statement, which in many languages raises an error when the

“assert” is false. This means that if, for some reason, the sum_two_numbers function was edited to return “2+2=5”, an

exception would be raised when the test is run.

Care should be taken when making automated tests: they should be as simple as possible, to avoid the presence

of bugs in the tests themselves, also, like all code in the world, it’s subject to its own maintenance: you should

thoroughly comment your tests, and if the tested component changes, the connected test should change too, or it

may fail.

22 TESTING YOUR GAME 506



2D Game Development: From Zero To Hero

It may seem a lot of effort coding automated tests, but such effort will be rewarded with lower maintenance effort

in the long run: the (sometimes considerable) effort you’ve put into coding automated tests will avoid a huge deal

of manual testing later on and ensure that loss of quality happens a lot less often.

       Time

I
       Effort

Initial
Effort

More effort
due to unit
test creation

Final
Maintenance
Effort

Saved
Effort

Figure 435: How the effort put in automated testing can give good returns

22.3.2 Manual Testing

Sometimes also called “play testing”, this is usually divided in time periods, where more andmore people participate:

• In-house testing with a small team of dedicated testers;

• Closed Beta where a small number of selected players is able to test the game, report bugs and issues.

Usually at this stage, the game is already mostly finished and playable;

• Open Beta similar to the closed beta, but players can freely subscribe to play the game.

We will talk specifically about each one of these test types in detail in the following sections.

22.4 Unit Testing

Unit Testing takes care of testing the smallest component possible inside your system: that usually means a single

function. Such “units” must be separated from all their dependencies (via mocking) to avoid bugs in their depen-

dencies to interfere with our testing efforts.

Many programming languages have their own unit testing frameworks, among the most used:

• Python: Unittest (in the standard library);

• Javascript: unit.js;

• C++: Boost Testing Library;

• Java: JUnit;

22 TESTING YOUR GAME 507



2D Game Development: From Zero To Hero

• Lua: luaunit.

Remember: during unit testing, you need to make sure that the unit that you’re testing has its dependencies mocked,

or the results of your test will depend on the performance and correctness of said dependencies.

22.5 Integration Testing

Integration testing is a step further from “unit testing”, here you take different “units”, put them together and check

how they behave as a group.

There are many approaches to integration testing, the most used are:

• Big bang integration: The majority of the units are put together to form a somewhat complete system

(or at least a major part of it), after that the integration testing starts. This can lead up to an “explosion of

complexity” if the results are not accurately recorded.

• Bottom-up: Test the “lowest level” components first, this should help testing the “higher level” ones. After

that you test the components that are “one level above” the previous ones. Keep going until the component

at the top of the hierarchy is tested.

• Top-down: Opposite of the previous approach, you test the integrated modules first, then you branch into

the lower-level modules, until reaching the bottom of the hierarchy.

• Sandwich Testing: a combination of Bottom-Up and Top-Down.

22.6 Regression Testing

Regression testing is a bit of an outlier in our “specific to general” testing structure, but that’s because their objective

is different.

Regression testing (sometimes also called non regression testing, you’ll see why) is used to avoid our software from

regressing into previous bugs.

This means that every time you find a serious bug in your software, you should fix it and make a test that will check

for you if said bug is resurfacing.

With time, bugs and regression tests will accumulate, which usually means that automation is involved (like contin-

uous integration and delivery) to execute them at each push or at regular intervals.

22.7 Playtesting

Automated testing won’t be able to help with how a game “feels” to the player, for that you need to a thorough play

testing strategy. Here we will talk a bit of different strategies that can be mixed and matched to get the best out of

it.

22.7.1 In-House Testing

The first sessions of play testing should be done in-house, with a dedicated play testing team that has great reporting

capabilities, and the product should already include tools that allow for quick reporting of bugs and issues that arise,

22 TESTING YOUR GAME 508



2D Game Development: From Zero To Hero

as well as a good logging system set to its DEBUG level for maximum detail.

Close collaboration with the testing team is vital for a good game to be released, instead of seeing them as “the

ones that give you more work”, try looking at them as “the ones that will ensure your game gets a lot of praise”.

22.7.2 Closed Beta Testing

Happening after the in-house testing, usually done with multiplayer games, the “Closed Beta” phase is done with a

selected group of players that try the game and report each and every issue with it, as well as bugs.

The product should have an easy way to directly report bugs and issues form inside the game itself, with the possi-

bility of attaching a detailed log with the “ticket”.

22.7.3 Open Beta Testing

Differently from the “Closed Beta” phase, and usually coming after that, the “Open Beta” phase doesn’t have a hard

limit on the number of players that can take part to the beta testing.

The product should have the same characteristics that are used in the “closed beta” phase, plus possibly a higher

degree stability.

Open Beta is usually done to test the robustness of the network system at higher loads, and having a possibly large

(maybe larger than expected) player base can be a real test for the infrastructure.

22.7.4 A/B Testing

A/B testing is a particular kind of testing that doesn’t involve the “solidity of the game”, as much as the enjoyability

of some of its features. In A/B testing users are randomly presented with one of two versions of a certain feature;

with a slight difference (usually a single variable that affects the experience is changed) between each of the two

“versions”.

A/B testing is normally used in an user experience research setting, but it can be used in game development too,

to see which version (usually called variant) is better suited for the game, or even prepare a “segmented strategy”

where one of the two variants could find place in a certain situation (for example a “simplified control scheme” vs a

“full control scheme”).

22 TESTING YOUR GAME 509



2D Game Development: From Zero To Hero

23 Profiling and Optimization

The real problem is that programmers have spent far too much time worrying

about efficiency in the wrong places and at the wrong times; premature

optimization is the root of all evil (or at least most of it) in programming.

Donald Knuth - Computer Programming as an Art

23.1 Profiling your game

23.1.1 Does your application really need profiling?

In this section we will have a small check list that will let us know if our video game really needs to be profiled.

Sometimes the FPS counter is trying to tell us a different story than the one we have in our heads.

23.1.1.1 Does your FPS counter roam around a certain “special” value?

There are cases where the FPS counter shows a low counter, but it stays around a certain value. This means that

the FPS value is artificially limited somewhere, either by VSync or something else.

Some special values you may see are:

• 25 FPS: PAL refresh rate

• 29.970 FPS: NTSC Refresh Rate

• 30 FPS: Used in some games

• 50 FPS: Used in some games

• 60 FPS: Used in most games

• 75 FPS or 80 FPS: Used in some LCD Monitors

• 90 FPS: Used mostly in VR games

• 144 FPS: Used in more modern, high-refresh rate monitors

• 240 FPS: Used in the most recent high-end games and monitors

23.1.1.2 Is the animation of your game stuttering but the FPS counter is fine?

If your animation stutters or its speed varies according to the load of your platform but your FPS counter is still stuck

at the maximum allowed framerate, you may have forgotten to tie the animation to the delta-time in your game

loop. Check the timing your game loop section for more information.

[This section is a work in progress and it will be completed as soon as possible]

23.1.2 First investigations

First of all, we need to understand what is the bottleneck of your game: check your task manager and see how your

game is performing.

23.1.2.1 Is your game using 100% of the CPU?

23 PROFILING AND OPTIMIZATION 510



2D Game Development: From Zero To Hero

Is your game using 100% of the CPU (if you’re on Linux, you may see percentages over 100%, that just means your

game is using more than one CPU core)?

First of all, you should check if you’re using the frame limiting approaches offered by your framework or game engine:

if they’re not active, your game will run “as fast as possible”, which means it will occupy all the CPU time it can. This

can result in high FPS count (in the thousands) but high energy consumption and slowdowns in other tasks.

If you have taken all the frame limiting approaches as stated above, that may mean that the game is doing a lot of

CPU work and you may need to make the game perform less work for each frame. In this case profiling tools are

precious to find the spots where the CPU spends most of its time: Valgrind or GProf are great profiling tools.

Figure 436: Using Valgrind’s Callgrind tool and Kcachegrind we can see what is bogging down our game

23.1.2.2 Is your game overloading your GPU?

If instead your game is not using all of the CPU computing power, you may have a problem on the GPU: your game

may be calling the drawing routines too often. The less a game has to communicate with the hardware, the higher

the performance. In that case using Sprite Atlases and other “batching techniques” that allow to draw many objects

with only one call will help your game perform better.

23.1.2.3 Is your game eating up more and more RAM as it’s running?

Your game starts well enough, but after just a few minutes it starts slowing down and becomes choppy. Your may

have a memory problem at hand.

If your game supports windowed mode, keep your task manager (or “top”/“htop”/“bpytop” if you’re on Linux) open

and look at your game’s process: does the memory used by your game increase as you’re playing it?

If so, you may be having a so-calledmemory leak[g]: somewhere during its running cycle, your game forgets to clean

up something, which stays resident in memory until your game closes. The result, after creating and deleting a lot

23 PROFILING AND OPTIMIZATION 511



2D Game Development: From Zero To Hero

of entities and leaving a lot of garbage behind is that the total memory used increases.

This is especially common in languages like C++, where there is no automatic “garbage collecting” and having cases

of so-called unreachable memory[g] can really mess up your memory usage.

Pitfall Warning!

Some people call unreachable memory cases “dangling pointers[g]”, but technically

they are two different (and opposite) things.

Check the glossary for more information.

If you suspect a memory leak, you may want to take a look at these sections:

• Entity Cleanup and Memory Leaks

• Using memory analyzers to detect leaks

• Resource Pools

[Do you know more about this? You can contribute, this book is open source!]

23.2 Optimizing your game

After accurate profiling, you need to intervene and try to get more out of your code. In this section we’ll talk about

some guidelines and tips on how to optimize your game.

23.2.1 Working with references vs. returning values

Depending on the programming language you’re using, and the amount of internal optimization its compiler/inter-

preter has, you may have the possibility to choose between two main ways of working, when it comes to functions:

• Returning a value from a function;

• Passing a reference to variables into the function and use that reference in your function (for instance in C++).

“Value Copying” can be a real resource hog when your functions work with heavy data. Every time you return a

value, instead of working on a reference, you are creating a new copy of the data you’re working on, that will be

later assigned.

This can happen also when passing parameters to a function (in this case you say the “parameter is passed by

value”): a new copy of the parameter is created locally to the function, using up memory. “Value Copying” can help

when you don’t want to modify the data outside your function, but is a waste when instead youwant to modify such

values.

Using things like “references”, “constant references” and “pointers” can be really precious in making your game

leaner memory-wise, as well as saving you all the CPU cycles wasted in memory copying.

23 PROFILING AND OPTIMIZATION 512



2D Game Development: From Zero To Hero

23.2.2 Optimizing Drawing

This heavily depends on the type of framework and engine you are using, but a good rule of thumb is using the lowest

amount of calls to the draw routines as possible: drawing something entails a great amount of context switching

and algorithms, so you should do it only when necessary.

If your engine/framework supports it, you should use sprite atlases/batches, as well as other interesting structures

like Vertex Arrays (used in SFML), which can draw many elements on the screen with only one draw call.

Another way to optimize your drawing routine is avoiding to change textures often: changing textures can result in a

lot of context changes (like copying the new texture from the RAM to the GPU memory), so you should use only one

oversized texture (in the form of a Sprite Sheet) and draw only a part of it, changing the coordinates of the rectangle

that gets drawn. This way you’ll save the PC a lot of work.

23.2.2.1 Off-screen objects

Make sure that your engine doesn’t try to draw objects on off-screen area (maybe on virtual surfaces): drawing is

an expensive operation and we should do it on the smallest possible set of objects, which is the visible screen area

(the viewport).

Drawing objects doesn’t change their internal state, so you can keep updating the objects and then draw them only

when they fall (even just partially) inside the display’s viewport.

1
2

3
4

5

6

1

2

4

Draw_List

Figure 437: Not putting off-screen objects in the drawing queue can be a good optimization

Some engines may already take care of this optimization, but some lower-level libraries may also leave that opti-

mization to you. A good way to test is drawing thousands (or even millions, with the help of a for cycle) of sprites

off-screen without any update code (maybe in a specific project) and see if the engine slows down considerably the

more entities are added.

23.2.3 Reduce the calls to the Engine Routines

Some engines have routines that introduce sanity checks, logic optimizations and more, and calling such routines

more than necessary can burden your game’s performance, even worse when you’re calling them per-frame.

If you want to move a character diagonally both up and right, don’t do this:

Listing 136: Double Engine Movement Call

23 PROFILING AND OPTIMIZATION 513



2D Game Development: From Zero To Hero

1 function update( f l oat dt){

2 Vector vector_up = (0, -1);

3 Vector vector_right = (1, 0);

4 // ...

5 characterController.Move(vector_up * dt);

6 characterController.Move(vector_right * dt);

7 // ...

8 }

As all the sanity checks in the Move function will be executed twice per frame (since we’re in the “Update” function).

Instead you should get the resulting movement vector first, and then use the Move function only once:

Listing 137: Single Engine Movement Call

1 function update(dt){

2 Vector vector_up = (0, -1);

3 Vector vector_right = (1, 0);

4 // ...

5 Vector total_movement = vector_up + vector_right;

6 characterController.Move(total_movement * dt);

7 // ...

8 }

This way instead we’re doing sanity checks and related operations only once, moving the character in its final position

without wasting resources.

23.2.4 Entity Cleanup and Memory leaks

One of the biggest scourges in software development (and an even bigger one in game development) are memory

leaks: the program allocates memory but doesn’t release it properly.

Memory management (as well as any kind of “resource management”) can be summarized in 4 phases:

• Acquisition;

• Initialization;

• Usage;

• Release.

This is especially annoying when languages that don’t have automatic garbage collection (like C++) are involved,

but it can affect any programming language. Memory management is hard, and we should always release any

resource that we acquire as soon as we’re done using it, but that’s not always easy: for instance when loading and

unloading levels is involved.

As mentioned before, this problem affects all languages, since some resources may be acquired by some “active

code” that is actually never running, thus preventing the garbage collector from working as it should.

Besides “being careful” with your resource management, you can check for memory leaks by using specific tools.

23 PROFILING AND OPTIMIZATION 514



2D Game Development: From Zero To Hero

23.2.5 Using analyzers to detect Memory Leaks

When developing a game, there are a lot of tools that allow you to inspect your game and find possible memory leaks.

Some are “static scanners” while other (usually called “dynamic testing tools”) require the game to be running.

23.2.5.1 Static Scanners

These tools analyze the code without running it, checking the style and common bugs that can be inserted by

mistake. An example of these static tools are “linters” (or linting tools).

Most of these tools are included in IDEs but some (like LLVM’s scan-build) are standalone.

Figure 438: An example screen from LLVM’s scan-build

23.2.5.2 Dynamic testing tools

Some tools require the game to be running, some general-purpose ones are used to findmemory leaks (like Valgrind),

while others have more specific purposes and are usually integrated into the engine.

Figure 439: A screenshot from Valgrind, looks like we have a memory leak here

These more specific tools can track the FPS, memory as well as the calls done to each function, allowing you to track

down what is bogging down your game.

Figure 440: A screenshot from Godot’s profiler

23.2.6 Resource Pools

Among the most performance-hungry operations in computers we find instantiation and destruction of objects: they

involve context switches in the CPU, memory allocation/freeing and a lot of other things.

23 PROFILING AND OPTIMIZATION 515



2D Game Development: From Zero To Hero

If you find yourself needing to instantiate and destroy a lot of objects of the same type, you may want to consider a

“resource pool” for such object.

A resource pool is a group of objects that is instantiated once, ready to use and kept in memory (eventually without

updating the internal status of the “inactive objects”) until needed.

init()

init() init()

Figure 441: A resource pool instantiates objects and “keeps them” ready when needed

When you need one of the objects, instead of instantiating it (and thus allocating memory, changing CPU context,

etc…) you just “pull” an item from the pool and change its internal state as needed (since the memory is already

instantiated). This allows you to “move” the cost of instantiating the object to some place in your code where some

delays are expected (for instance the loading screens, after you loaded your resources).

reset()

Obj2

Obj3

Pull

Figure 442: Pulling an object from a resource pool

When you’re done, instead of destroying the class (thus calling memory free methods and changing the CPU context

again), you “return” the item to the resource pool, ready for another round. This allows you to “move” the cost of

destroying the object somewhere where slowdowns are acceptable, for instance (again) loading screens.

23 PROFILING AND OPTIMIZATION 516



2D Game Development: From Zero To Hero

Obj1

Obj2

Obj3

Return

Figure 443: Returning an object from a resource pool

Particle systems are a prime example of resource pools: instead of continuously creating and destroying particles,

you create all the particle object in advance to recycle and reuse during the game.

23.2.7 Lookup Tables

Inside older games, where CPU cycles were at a premium, a widely used trick to gain performance were “lookup

tables”.

These tables would store the result values for certain expensive functions, given certain inputs, thus replacing the

expensive operation with a lookup inside a certain data structure (which is usually really fast).

... ...
Complex
Function

Lookup Table

Build Time Runtime

QuerySave

Figure 444: How a lookup table works

This has a tradeoff: you’re trading CPU time for Memory space, since the lookup tables are meant to stay into RAM.

In modern games instances of lookup tables are as rare as hens’ teeth, but it’s an interesting historical view over

some older forms of optimization.

23.2.8 Memoization

Memoization (sometimes known as “tabling”) is an optimization technique that consists in saving the result of an

expensive function, as well as the function’s arguments for later calls: this way when the same arguments are

passed to the function, you can return the stored value instead of performing the calculation again.

23 PROFILING AND OPTIMIZATION 517



2D Game Development: From Zero To Hero

This is due to the fact that functions are deterministic, so if you have the same inputs you will always receive the

same outputs: this allows to minimize expensive computations at the expense of memory.

Obviously this technique can’t really be applied to functions that make use of pseudo-random numbers and con-

nected functionalities, because memoization would completely void such randomization.

Memoization is usually implemented via decorators that check if the arguments passed are inside a defined data

structure (usually a hash table): if there is a hit, the result is returned immediately, if not the original (expensive)

function is run and its result is memorized in said structure.

A simple memoization system could work like the following UML diagram:

Load arguments

arguments in table?yes no

Load result from table Calculate result from expensive function

Save result and arguments in table

Return result

Figure 445: How a simple memoization pattern works

The biggest problem with this simple approach is that every different call to the function would be memorized, this

would end up eating more and more memory, without any form of control.

The solution is deciding the “table size” of the results we want to keep: sometimes keeping the 10most recently used

calls is enough, sometimes we need more. Being able to control this will allow us to fine-tune the CPU vs. memory

balance.

23 PROFILING AND OPTIMIZATION 518



2D Game Development: From Zero To Hero

Load arguments

arguments in table?yes no

Load result from table Calculate result from expensive function

Remove least recently used item in the table

yes
table full?

Save result and arguments in table

Set the arguments and result's last used time to now

Return result

Figure 446: How a more complex memoization pattern works

Considering what we’ve seen so far, we can say that memoization should be used only on functions that are:

• Expensive

• Called often with the same arguments

Pitfall Warning!

If we start using memoization techniques on all functions, we may end up with a soft-

ware that occupies a lot of memory without any significant speedup. Moderation is

key.

Here’s how a memoization pattern could be implemented:

Listing 138: An example of memoization

1 class MyMemoizedObject{

2 HashMap memory = new HashMap ();

3

4 function memoizedfunction(string parameter) -> string{

5 i f (parameter in this.memory.keys()){

6 // If the result was calculated earlier , we can just return it

7 return this.memory[parameter ];

8 }

9 // If the result has never been calculated we do so.

10 // ...

23 PROFILING AND OPTIMIZATION 519



2D Game Development: From Zero To Hero

11 // Very complex and heavy calculations here

12 // ...

13 result = something_complex;

14 // Now we save the result in our memory , so other calls with the same parameter will be

faster

15 this.memory[parameter] = result;

16 return result;

17 }

18 }

23.2.9 Approximations

Many times when developing games we don’t need to have a value that is precise to the 10th decimal digit, that’s

where approximation comes into hand.

A prime example of approximation was used in Quake III Arena, via the algorithm known as “Fast Inverse Square

Root”. Back in 1999 calculating the inverse square root of a number was an expensive calculation for the CPU, so

the developers decided to create an algorithm that would calculate an approximation quickly.

This was done by playing around with the floating point low-level structure and using a “magic constant” (0x5f3759df)

to create a good “first guess”, after that a single iteration of the Newton-Raphson Method is applied to refine the

guess.

This proved to be faster than directly calculating a normalized vector (which uses a square root and a division,

expensive at the time) and also faster than using a lookup table. The algorithm proved to be slower (and less

precise) than the dedicated SSE instruction in the newer x86 CPUs.

23.2.10 Eager vs. Lazy Evaluation

Lazy objects are yet another possibility when it comes to optimization, with some drawbacks: you create an object

but the calculations related to its state are performed when the object is first used, instead of when it is constructed.

This can be really useful when you have a great quantity of items that you are iterating through, one at a time, but

don’t need the whole collection at hand at once. When it comes to collections, lazy objects help saving memory at

the cost of more CPU cycles while the game is running.

In some languages, this concept is abstracted in a language feature (like “generator expressions” in Python), while

in others you’ll have to work a little bit harder to get them.

Let’s take an example, we have a custom object that contains a reference to a list of numbers: when we iterate

through this object, we want it to return the numbers saved, halved.

23 PROFILING AND OPTIMIZATION 520



2D Game Development: From Zero To Hero

Note!

What follows is just a didactic example, but should be simple enough to understand

the difference between “eager” and “lazy” objects.

23.2.10.1 Eager approach

The eager approach is to take the list of numbers, create a second list inside our object with the numbers halved:

this will make sure that the values are always ready and readily available, but will consume more memory. Here’s

the example:

Listing 139: An eager object

1 class EagerObject{

2 in t [] halved_numbers;

3

4 constructor( in t [] numbers){

5 // Prepares the halved numbers list

6 for (number in numbers){

7 halved_numbers.append(number / 2);

8 }

9 }

10

11 getObject( in t index) -> in t {

12 // Returns the pre -calculated object at the requested index

13 return halved_numbers[index];

14 }

15 }

23.2.10.2 Lazy approach

If we know that we are working with millions of values, and we are going through them kind of rarely, saving all the

halved values in RAM may not be a good idea. This is where lazy evaluation comes into play: instead of memorizing

the value in RAM, we calculate it on-demand. Here’s the example:

Listing 140: A lazy object

1 class LazyObject{

2 in t [] numbers_reference;

3

4 constructor( in t [] numbers){

5 // Saves the original list (possibly as a reference)

6 numbers_reference = numbers;

7 }

8

9 getObject( in t index) -> in t {

23 PROFILING AND OPTIMIZATION 521



2D Game Development: From Zero To Hero

10 // Calculates the halved number on -demand

11 return numbers_reference[index] / 2;

12 }

13 }

Tip!

Lazy objects are great when you’re working with bigger-than-RAM lists: each single

value is in memory when needed, instead of the whole list. This comes at a cost: when

you need to iterate on such list multiple times, the cost or re-evaluating the result may

become a problem.

23.2.11 Detach your updating from drawing

An interesting approach to squeeze a bit more performance from your game could be detaching your updates from

the drawing routine. For instance, your game could be refreshing its screen at 60fps, but its internal state is updated

only 20 times a second.

This will obviously introduce some complications, since you may need some interpolation to make things work

smoothly. This approach will get rid of a lot of heavy work (in the case above, you will get rid of 2
3 of the updates),

freeing resources for new things.

This means that you can process AI less times (thus “check for player’s presence” once every 50ms instead of once

every 16), physics can be processed less too (we don’t care if a block starts falling after 15 or 50ms, the time is still

too short for us to notice).

Detaching your updates from the drawing routines usually entails a change of language too: when you’re talking

about drawing cycles, we talk about “frames”, while when you’re talking about updates, you should be talking about

“game ticks”.

23.2.12 Be mindful of how you query your data structures

Sometimes small precautions can avoid a great deal of pain when it comes to optimizing our game.

Let’s imagine that our game makes use of a single-file database (for instance SQLite) to save and load settings.

It is a lot harder for a database to deal with multiple small queries than dealing with one big query instead. So if you

need to extract some data, try to avoid querying a database inside of a loop: instead focus on what data you need,

extract all the data you need at once and then loop on the result of the extraction.

This doesn’t apply only to databases, but also other data structures that allow for filtering.

[Do you know more about this? You can contribute, this book is open source!]

23 PROFILING AND OPTIMIZATION 522



2D Game Development: From Zero To Hero

23.3 Tips and tricks

23.3.1 Be mindful of your “updates”

It is a common mistake among new game developers of putting the whole game logic inside the engine’s update()

method: this will eventually bog down the game and create inconsistencies when the framerate varies.

Input should be handled in your engine’s event-based input system (very rarely you will need to check the keyboard

status inside the update() method), also you should absolutely take advantage of your engine’s facilities when it

comes to managing how the game updates.

For instance, Unity offers 3 update functions:

• FixedUpdate()

• Update()

• LateUpdate()

FixedUpdate() is executed with the Physics engine, so here is where you should apply forces, torques and any other

physics-related function. Being run with the physics engine, this function may be called zero, one or more times per

frame.

Update() is your run of the mill update function, it is always executed once per frame, without fail. This is used for

other kinds of updates, if you do physics operations here the results may be inconsistent (since it doesn’t run in sync

with the physics engine). You can still move objects that are not tied to physics.

LateUpdate() is a utility function that is run once per frame, after the Update() function. This is useful for all kinds of

operations that would require the update() calculations to be completed.

23.3.2 Use the right data structures for the job

Choosing the appropriate data structure for a task can have a lot more impact on performance that we may expect,

and choosing the wrong one can have an even bigger impact.

So here are some small tips that work with the majority of programming languages.

Arrays are contiguous memory sections, thus indexing (finding an element at a certain position) is fast, as is scanning

through the entire array itself. The limitation is that “pure arrays” have a well-defined size and cannot be resized: if

you need a bigger array, you need to allocate memory for it and copy over the data. Inserting an item at the end of

the array (if not full) is fast, but inserting an item at the head or in the middle of the array can be quite slow (since

the items would need to be moved over).

Dynamic Arrays (sometimes called “Vectors”) try to solve the “frozen size” of Arrays, while keeping the advantages.

Pushing to the end of a dynamic array is usually fast (with the exception of the times the array is automatically

resized to hold more items), but pushing items at the beginning (or in the middle) of the array is usually quite slow

(because all items would need to be moved). Dynamic arrays tend to “overcommit memory”, so they may be bigger

than necessary (to save on the computationally heavy task of resizing and copying over items).

23 PROFILING AND OPTIMIZATION 523



2D Game Development: From Zero To Hero

Linked lists are good if you need fast insertion anywhere, but they tend to lack in the iteration department: since

the nodes are not contiguously packed in memory, iteration can be slow.

Hash tables are good if you need to memorize items in a “key-value” fashion and retrieve them very quickly, but

they use more memory and may fall short in terms of performance if a bad hashing function is involved.

There is no “silver bullet” when it comes to data structures, but knowing the basics can make your code a lot better:

there are more advanced data structures, like heaps, that are discussed in this book, check them out!

23.3.3 Dirty Bit

Not all entities in your game need to have their state updated all the time. Continuously updating all entities’ internal

state can be really costly in terms of game performance.

A quick way to make your game lighter on resources (and thus more performing) can be putting a boolean check at

the beginning of the update function, checking if the object really needs to have its internal state updated.

A possible example could be the following:

Listing 141: Example on how to optimize entities with a dirty bit

1 class Player{

2 Vector speed = Vector(0, 0);

3 bool needs_update = False;

4 // ...

5 function input(){

6 // ...

7 i f (right_key.is_Pressed){

8 speed = speed + Vector(1, 0); // Move right

9 needs_update = True;

10 // ...

11 }

12 i f (up_key.is_Pressed){

13 speed = speed + Vector(0, -100); // Move up (jump)

14 needs_update = True;

15 }

16 // ...

17 }

18

19 function update( f l oat dt){

20 i f (needs_update){

21 // Do Update instructions

22 // ...

23 }

24 }

25 }

If your code is well-done, you won’t have issues like animations freezing, because those will be separated from the

“update routine”, since the animator will chug along its frames when requested by the draw function.

23 PROFILING AND OPTIMIZATION 524



2D Game Development: From Zero To Hero

23.3.4 Far-Away entities (Dirty Rectangles)

Another way to optimize your game performance is not updating entities way off screen: this is also a technique

used in the game Minecraft, where entities are frozen when you are far away from them, to save on resources.

A possible idea would be having an “updatable rectangle” (sometimes called “Dirty Rectangle”), bigger than the

screen, and only the entities inside such rectangle will be updated.

This could create some issues when it comes to games that have their challenge deriving from entities updating in

sync with each other, thus if we implement this “updatable rectangle” one or more entities would fall “out of sync”,

possibly making beating the level impossible.

In that case we may just put out an exception (where certain entities are updated no matter what) or divide our

level into smaller “rooms” that are instead entirely updated all the time. Another way could be updating the internal

state of the objects, but not drawing them at all, which would still lighten the workload.

Tip!

If you want to keep updating far away entities (for instance to avoid seeing all entities

start updating as soon as they enter the screen), you can update entities every other

frame, or just update one half of the entities on one frame and the other half on the

next.

23.3.5 Tweening is better than animating

Animators and animation frames are performance-hungry and should absolutely not be used in all those situations

where you can instead use inbetweening techniques.

This means that frame-by-frame animations should not be used when taking care of moving UI parts: if you want to

slide a piece of UI (take for instance a drop-down terminal from a “computer hacking” game) from the top, you can

just tween its position and save a lot of memory.

Remember that Tweening doesn’t apply only to positions, you can tween any property of a game object.

So a quick way you can optimize your game, is removing all the unnecessary animations and replace them with

tweening, your game will surely benefit from that.

23.3.6 Remove dead code

There are many definitions for “dead code”, some use the “unreachable code” definition (for instance code placed

after a “return statement”) some use a more extensive definition.

I like to think of dead code as “wasted code”, which is:

• Anything that happens to be written after a “return statement” in a function: return statements are used to

give control of the program back to the caller of a function, so this code will never be executed;

23 PROFILING AND OPTIMIZATION 525



2D Game Development: From Zero To Hero

• Unused variables: variables are allocated in memory, require calculations and CPU cycles, if not used that’s

just a waste;

• Unused code: complete functions that are never called are a waste of memory (because they may be loaded

in RAM) and of disk space, making the executables bigger;

• Debug code: sometimes we need to write code to debug other code, this code may end up being part of a

“release version” and weigh it down, this may also make the game more sensitive to cheating and hacking.

You should be careful when optimizing out dead code, even more when you are dealing with functions which result

is not used: those functions may change some global state (or change stuff by usage of side effects[g]).

23.4 Non-Optimizations

In this small section we take a look at some alleged “optimizations” that actually do nothing (or close to nothing) for

our game’s performance.

23.4.1 “Switches are faster than IFs”

Some people allege that using “switch” statements instead of “if” statements is bound to optimize the game. This

an overstatement, and we can prove it with a simple test.

Let’s create two C++ listings, like follows:

Listing 142: IFs vs Switch - IF Statements

1 #include <iostream >

2 using namespace std;

3 in t main(){

4 for ( in t i = 0; i < 10000000; i++){

5 in t x = rand() % 5;

6 i f (x==1){

7 cout << "One" << endl;

8 }else i f (x==2){

9 cout << "Two" << endl;

10 }else i f (x==3){

11 cout << "Three" << endl;

12 }else i f (x==4){

13 cout << "Four" << endl;

14 }else i f (x==5){

15 cout << "Five" << endl;

16 }

17 }

18 return 0;

19 }

Listing 143: IFs vs Switch - Switch Statements

1 #include <iostream >

2 using namespace std;

23 PROFILING AND OPTIMIZATION 526



2D Game Development: From Zero To Hero

3 in t main(){

4 for ( in t i = 0; i < 10000000; i++){

5 in t x = rand() % 5;

6 switch(x){

7 case 1:

8 cout << "One" << endl;

9 break;

10 case 2:

11 cout << "Two" << endl;

12 break;

13 case 3:

14 cout << "Three" << endl;

15 break;

16 case 4:

17 cout << "Four" << endl;

18 break;

19 case 5:

20 cout << "Five" << endl;

21 break;

22 }

23 }

24 return 0;

25 }

These pieces of code will be compiled without any optimization, using G++, using the following command:

1 g++ -Wall -Wextra -Werror -O0 filename.cpp -o filename.bin

Where “filename” is replaced by the source name, then each file will be executed using the “time” Linux command,

like follows:

1 time ./ filename.bin

Below we can see the results for both the codes:

Figure 447: Time taken by the IF code

Figure 448: Time taken by the Switch code

We can see a difference of just around 0.25 seconds, over 10 Million iterations. If you changed an equivalent IF

statement for a Switch statement, you would earn a quarter of a second every 46 hours of gameplay at 60fps.

23 PROFILING AND OPTIMIZATION 527



2D Game Development: From Zero To Hero

The right choice is the simply choose the structure that lets you have the most readable code: the more your code

is readable, the easier it is to understand; the easier to understand, the lower the probability that there is a bug in

there (or a performance hog of some sort).

23.4.2 Blindly Applying Optimizations

There rarely is something more wrong you can do when optimizing than blindly applying optimizations without

considering your application context.

Using resource pooling in an environment with limited memory (but plenty of CPU power) can prove a disaster: it’s

better to instantiate and destroy objects in such case.

Sometimes animators can be faster than LERPing/Tweening, mostly when you have to tween objects with multiple

children: tweening would create a lot of CPU-bound calculations for the new position and size that will make the

whole thing bog down and get choppy.

The only thing you can do is think first and try later: this book can give you some suggestions, but nothing should be

taken at face value. Remember the context your game is working in and do not treat all platforms like they’re

the same: WebGL is different than Console which is different than Mobile.

23 PROFILING AND OPTIMIZATION 528



Part 7: Marketing and Communities



2D Game Development: From Zero To Hero

24 Marketing your game

Here’s my whole marketing idea: treat people the way you want to be

treated.

Garth Brooks

24.1 An Important Note: Keep your feet on the ground

Let’s be honest: the “indie success stories” you see everywhere are going to give you a false sense of hope, that

“there is space for everyone in the industry”.

I’m going to break it to you: if you’re in for the money, you already lost.

The reality is that many game developers are horribly underpaid and many projects failed and many others are going

to fail.

If you’re in for the sake of creativity, to make something you want to make, seeing your project perform “under par”

will hurts less, if at all. Your first project won’t be a best-seller, but doing something you enjoy will make it better.

This book is meant to teach the basics of game development as a way to channel your creativity, and to help you

understand the pitfalls and mistakes that can keep you from showing your best product, in the best possible way.

24.2 The importance of being consumer-friendly

We live in a “Money-Driven” world. This is a fact, not an opinion. So, leaving morality out of the discussion, you can

argue that the general game publisher mentality of “getting all the money” is not that wrong. But you don’t have

to be an idealist to realize that we should see the world for what it could be, and not for what it is at the moment.

We should apply this mentality to every aspect of our world, game industry included.

We are NOT here to enlighten you about how game industry has to change, but every game developer should realize

that the true success of a game is not based on sales, it is based on customer satisfaction. So, even if this cursed

“publisher mentality” could be applied to small indie developers (spoiler: it is not), we have to fight it back, and

restore the “customer satisfaction above all” philosophy. So, fun fact: the only thing we (small indie developers) can

do is doing the right thing.

Focus your effort on customer satisfaction, you have to be consumer-friendly!

My first advice is: instead of implementing a thousand features, make one single thing a thousand times better

(Bruce Lee style). If you promise the client a ton of features to do you can generate hype (we will discuss it later),

but if you are an indie developer (and most of times even if you’re not) making one thing extremely enjoyable is

way better.

Why? Because your goal is to create something (even if it’s only one thing) that will make the customer remember

your game: Quality over Quantity.

Satisfying customers is no easy feat, we all know this. So one question you may ask is: How in hell can I be original?

24 MARKETING YOUR GAME 530



2D Game Development: From Zero To Hero

Answer is: You don’t have to.

So, my second advice: There are million of games out there, so creating something never seen before is very, very,

very, very difficult. So, try to innovate what already exists, make usual features in your own way. This is how

sub-genres come to life.

You think this is not the right way? Then go and tell the people from From Software that the “Souls-like” sub-genre

was not innovating.

Last advice: Gameplay over Graphics.

We’re not Activision, we can’t afford to spend 10 million bucks for a cutscene. Aim for the “old fashion gamers”, the

customers that play for fun, not because some game is gorgeous to see. Whatever your working on, whatever your

game genre is, focus on making the gameplay fun to play. Things are really this simple. Work 2 hours less on a

model or sprite and 2 hours more on thinking about how to not get your customer bored.

Random Trivia!

Around July 2015 a game called “Brutal Force” (a clone of the more successful “Nuclear

Throne”) was hit with a wave of criticism after they raised their base price during a sale.

The game was 75% off, but its sale price quickly went from 99¢ to $1.99 until it reached

$3.24. The moral of the story is “never lie to your customers”.

24.3 Pricing

If you want to sell your game, Pricing is one of the 4 “P”s of marketing you should pay attention to (along with

“Place”, “Product” and “Promotion”), here you will find some tips on how to price your game.

24.3.1 Penetrating the market with a low price

The video gamesmarket is quite large but also quite saturated, and it is really hard to stand out without a competitive

visuals, mechanics and most of all: price.

Penetrating the market is easier when done with a low price, even more when your game does not boast “innovation”

as one of its own strong points. Usually “retro” titles benefit from this pricing model.

After the initial “cheap” phase, you should be able to recover your investment by selling “premium” products later

(like higher-budget games). The main objective of this strategy is to create the so-called “brand awareness”, in

short: letting yourself get known.

24.3.2 Giving off a “premium” vibe with a higher price

When instead your game has something more (like cutting-edge, never seen before graphics capabilities), you may

be able to keep a high price, giving off the vibe that your product is “superior” to its competition.

This can also work with products that offer really innovating concepts, and rarely works with “run of the mill” games

that you see almost anywhere.

24 MARKETING YOUR GAME 531



2D Game Development: From Zero To Hero

24.3.3 The magic of “9”

There is something psychologically magic about the number 9. When you price something at $0.99 instead of $1.00,

it looks like you’re giving away the product for almost-free. Same goes for pricing your game $39.99 instead of

$40.00, the price will look a lot closer to $30.00 than $40.00, even though the difference to $40.00 is just 1 cent.

~60.00$

69.99$

~60.00$

69.99$

~70.00$

Figure 449: How first impressions leave a mark, even when it comes to price

This effect is due to how our brains work: we’re always trying to “be lazy”, so our brain does a “first pass” which

reads the price as being in the 60$ range (for the reference image), and only then we realize it’s actually much

closer to 70. By that time, we already had a “first impression” of the price, which will be hard to remove.

24.3.4 Launch Prices

Another way to create product awareness is setting a “launch price”: a discounted price for the period the game is

launching (for example a week), after that the game’s price goes back to its “listing price”.

This will ensure a quick influx of players (even more if you built hype well) that want to get your game for a bargain.

A variation could be having a low-priced base game, which then can be monetized with Downloadable Content (DLC)

that add more to the base game.

24.3.5 Bundling

Another way to entice players to buy your product is “bundling”, that is “offering more for the same price”. If your

game has a really notable soundtrack, a good idea could be selling such soundtrack along with the game (which

could help you pay your composers), or maybe a digital version of an artwork book, or sketches that can give an

insight on the development.

Other types of bundling can include other games that you produced, or being part of a bundle of games of the same

genre. An instance of “bundling” could be the famous “Humble Bundle”, which bundles games around a certain

theme or for a defined occasion (like Christmas Holidays).

24 MARKETING YOUR GAME 532



2D Game Development: From Zero To Hero

It could be interesting to offer flexible prices on your bundles, like the following:

• Base Game: 9.99$;

• Base Game + Soundtrack: 14.99$;

• Base Game + Artwork Book: 15.99$;

• Base Game + Soundtrack + Artwork Book: 18.99$.

This will allow your players to choose which “extras” they want to buy, making themmore comfortable in the process.

24.3.6 Nothing beats the price of “Free” (Kinda)

Free to play games are all the rage these days, you can play a great game for free, if you’re willing to resist all kinds

of microtransactions and premium DLCs.

That is actually one of the problems with Free to Play games: you must not get “too naggy” about microtransactions,

or your player will get annoyed and stop playing. Also your game must still have enough qualities to be played: if

your game is evidently low-quality, no one will play it, not even if it’s free.

24.4 Managing Hype

It’s time to discuss about promoting our works.

Let’s start with an obvious (sadly not that much obvious) statement: We are not a big publisher, we cannot afford

to make big mistakes.

Truth is that companies like EA, Ubisoft, Square Enix, ActiVision (and many more) can do pretty much everything

they want. Why? Because they know that a massive part of their audience will buy the product “sight unseen”, no

matter what.

We are not in this situation, so we have to be very cautious. We must be aware that bad moves (not mentioning

illegal ones) lead to major consequences, and most of the time indie developers cannot pay this price.

Most important thing to keep in mind is: never promise without keeping your word. This is very important, especially

if you’re making people pay and the game is not complete yet (so-called “Early Access”).

You’re not a big publisher, people don’t trust you and will not pay you for a promise. You have to give them something

worth the price, immediately enjoyable. Overpricing your game and justifying that because of “future release/con-

tents” is NOT going to work either.

Patreon (or crowdfunding websites in general) could be an interesting compromise for such situation, but you have

to use it in the right way, and never abuse your supporters trust. Keep in mind all the basic tips for managing hype

we just discussed, and make sure to respect promised releases/updates when related to a certain amount of income

from your crowdfunding (so-called crowdfunding “goals”).

24.5 Downloadable Content

DLC changed the game industry, this is a fact. How? You may ask.

24 MARKETING YOUR GAME 533



2D Game Development: From Zero To Hero

The answer is very simple: it’s an excellent way to extend a game’s lifetime, especially for a single-player games.

They are both a way to keep people playing a game (or make people come back) and, at the same time, earning

money.

As always, there is a good way to do things, and a very bad way.

24.5.1 DLC: what to avoid

In my opinion there are two major behaviors to avoid, besides the obvious “Do NOT overprice”. I’ll illustrate them,

showing some examples.

1) Putting the “true” ending in a DLC This behavior is almost insulting for the customer. Creating a game and

put its ending in a DLC is equal to sell an unfinished product, this is the truth. For a “casual fan” it may not matter

much, but it’s very annoying for a true fan of the game/saga. Why? Because you are implicitly forcing him to pay

twice: The game and its DLC. Some major game companies exploit this mechanic to simply cut off some content of

the original game and put it in a DLC: same effort and more income. I found the pair EA/BioWare to be the major

example for this behavior with Dragon Age Inquisition and its DLC “The Trespasser” comes immediately to mind.

2) Selling a Season Pass “on trust” With this behavior you’re demanding a lot from your customers, things can

go really wrong. To put it simple you’re selling a Season Pass without presenting the DLC. Ideally if you’re selling a

season pass from day 1 than you should, at least, let the audience know about the number of future DLC and their

basic content/quality/quantity. So what happens if an over-hyped game is released alongside its season pass and

the whole thing is quite a flop? That’s the case of FFXV. Square Enix made quite the gamble, and it really didn’t pay

off. But Square Enix is Square Enix, so it won’t go bankrupt any time soon.

24.5.2 DLC: what to do

The Golden Rules are:

• Limit DLC to additional content. Related to the main story, but not concerning major twists or the finale

itself;

• Create the DLC with an adequate playtime. If your game is an RPG with over 60 hours of content you simply

cannot make a 5-hour long DLC;

• Sell a Season pass only if you’re going to publish at least 3 distinct DLCs, or two very extensive ones;

• Obviously make the customer pay a fair price.

I find CD Projekt RED the absolute best company when it comes to DLCs. In particular “The Witcher 3 Wild Hunt”’s

two DLCs have all the good qualities that we want.

The adequate content, a fair price and we’re talking about a combined 50 hours of extra game time.

24.6 Digital Rights Management (DRM)

Another thing that can make or break a game’s enjoyability is the presence of a Digital Rights Management System

(shortly referred to as “DRM”).

24 MARKETING YOUR GAME 534



2D Game Development: From Zero To Hero

A DRM is a piece of software that silently sits in the background of a game to verify its authenticity, thus limiting

piracy for the first months of the game being released.

A question comes up to mind: Why would an invisible piece of software influence a game?

There are some major reasons why a DRM System could drive away customers:

• The DRM interacts with the game in an annoying way;

• The DRM behaves outside of its scope;

• (An extension of the previous point) The DRM is known to spy on its users.

We have cases of “DRMs interacting with the games badly” left and right, for instance the “always online” DRMs

that stop you from playing the game if your connection drops for a second, or some famous instances where more

DRM Systems were stacked on top of each other, slowing down the game’s performance.

This brings to something that many find annoying and unfair: people pay to play an original game and are hindered

by DRM, while pirates are free from such hindrance for the fact that they pirated the game. You paid for the game,

and you pay the price for other people pirating it, in the form of frame drops, slowdowns and sometimes flat out

unplayability.

Another thing players hate is having a piece of software that acts out of its scope or, even worse, similarly to a

malware[g].

There have been cases of DRM systems installing themselves as rootkits[g], making it impossible for the player to

uninstall them, even after removing the game said DRM was tied to.

For instance that’s what happened with the free game “Sonic Gather Battle”, a tournament fighter fan game starring

the beloved Blue Hedgehog. This game contained a piece of software that would track your browser tabs: if you

searched for cheats/mods/hacks, it would close your browser and enable a “protection stage”, making the game

impossible to play, by adding immortal enemies that would one-shot you.

At the same time such DRM would have raw disk access and would also search for Cheat Engine installations. To top

it off, the game would send the computer IP to a server to be saved in a list, so that the “protection stage” would

still engage, even after a fresh install.

Some research found out that the game would sometimes require administrative access to the system, which

shouldn’t usually happen.

The bottom line is: a DRM doesn’t always guarantee more people will play your game, so if you have to implement

a DRM system, do it well, do some tests, see if there are framerate drops, stutters, see how the game behaves

when the internet goes down while playing, etcetera…

Some games even decided to go DRM-less, such as any game sold on the GOG (Good Old Games) marketplace. This

is another important decision you have to think through, to ensure your game has the highest chance of succeeding

as possible.

24 MARKETING YOUR GAME 535



2D Game Development: From Zero To Hero

24.6.1 How DRM can break a game down the line

In November 2019, Disney’s game “TRON: Evolution” has been reported as “unplayable” due to the Disney’s Se-

cuROM license expiring. This had serious ramifications.

The game cannot be played, since SecuROM checks periodically the activation status and reports a “serial deacti-

vated” error and the people who bought a legit copy of the game found themselves unable to enjoy their rightfully

acquired product.

This is another situation where piracy wins, since people who pirate games have a way better experience compared

to the people who legally bought the game. Players are in the hands of the game publisher and their intention

of maintaining the game; as well as in the hands of the DRM manufacturer, since no software is eternal, the DRM

servers may close down, blocking the authentication.

24.7 Free-to-Play Economies and LootBoxes

Let’s face the most controversial topic, here we go.

24.7.1 Microtransactions

This is quite the hot topic at the moment: the infamous, devilish microtransactions. Let’s put this clear from the

start, microtransactions are NOT intrinsically bad. As always there’s a good way and a bad way to make things. In

that case the bad way can bring really backfire nastily.

Microtransactions should be limited to fashion accessories and avatar customization. Nothing related to game me-

chanics or gameplay-related elements. Everyone hates pay-to-win.

We must acknowledge that there are people willing to pay in order to have some bling for their avatar. Microtrans-

actions, and lootboxes as well, should be used for this kind of audience.

I found Blizzard to be the best example for a good implementation for Microtransactions and lootboxes. Overwatch,

for example, presents the best example of lootboxes, giving the audience access only to fashion/customization

features for the heroes, like: different skins, animations, vocal sounds.

On the other hand EA, with the Fifa series, is the perfect example of how to NOT DO microtransaction/lootboxes. The

reason is very simple: Fifa Ultimate Team is the biggest, most greedy, pay-to-win mechanic ever.

You could question me, stating that lootboxes are gambling microtransactions. You’re right. It’s a tricky topic, so it

has to be done right, but it’s not bad for the sake of existing. Otherwise we wound end up making an inquisition

about how people spend their money.

Now many countries are making an effort to regulate lootboxes (some even making them straight up illegal), so you

should be always informed about local laws, and if you decide to implement them, you should know the duties that

come with it.

24.7.1.1 The human and social consequences of Lootboxes

24 MARKETING YOUR GAME 536



2D Game Development: From Zero To Hero

Among all monetization schemes, lootboxes are probably among the most controversial. At least the ones that are

paid with real-life money.

The objective of lootboxes and microtransactions is to generate a secondary revenue that some experts call “recur-

rent user spending”.

The idea behind lootboxes is having a prize pool from where a random prize is selected, the user buys a lootbox and

gets a randomized item (or set of items), usually accompanied by an epic set of animations, colors and music.

This mechanic can remind someone of slot machines, which share the same psychological principle behind their

idea.

Flashy lights and music are tailored to trigger certain chemical reactions in our brains, which will make them seem

fun. This adds to all the “off by one” psychology, that will hook you to have “one more go” (how many times you

heard of people losing the lottery because of numbers “off by one digit”?).

The situation gets even more serious when you want a very specific item in the prize pool, which lowers the chances

of a win in the player’s eyes and consolidates the “one more go” way of thinking.

Things become horrible when kids are involved, if they see their father buying them a lootbox and learn how to do

it, sooner or later the credit card will be rejected (and it happened - internet archive link to a BBC article).

The situation becomes catastrophic when you start putting people with compulsive disorders, or people with gaming

addiction, gambling addiction and the so-called “whales” (people with high amounts of money and high willingness

to spend such money in video games). Some people use videogames as a mean to escape their gambling addiction

and lootboxes can trigger the same mechanisms in the peoples’ brains.

This obviously has serious consequences when it comes to consumer trust and the image of your game development

studio (or even yourself) that can culminate into a full-blown boycott of your products.

Remember: you are not a big publisher, you cannot take the hit of a really bad decision.

24.7.2 Free-to-Play gaming and Mobile Games

Let’s talk a bit about free to play games.

We cannot approach that topic without speaking a little about mobile games, the very kingdom of free to play gaming.

First of all: What NOT to do:

• Make people wait/pay in order to play (The so-called “energy system”, very popular at the moment). Pay-to-

Win mechanics are bad, but almost understandable, but Pay-to-Play ones are simply disgusting;

• Make intrusive banners/advertisements, that stop gameplay or reduce the available screen size;

• Avoid Pay-to-Win, especially in a multiplayer game.

I also want to give you a major advice about how to use banners/advertising in a smart way:

24 MARKETING YOUR GAME 537

http://web.archive.org/web/20190712061732/https://www.bbc.com/news/technology-48908766


2D Game Development: From Zero To Hero

Let people decide if they want to view an advertisement or not. Especially in a single player game, if you give them

something big in return (for example double points/coins/gold for next game, or the chance to continue after a death)

the will accept the offer.

This mechanism has two major positives:

• Gamers are NOT annoyed by the use of advertising, they usually see this mechanism as a trade deal: “Do ut

des” (I give you, you give me in exchange);

• If they do it once, they’re probably going to do it again. At the end they willingly watch advertisement for you.

It is obvious that you shouldn’t kill your player in-game over and over so you can offer them the chance of watching

an advertisement to continue playing, that will be seen as a form of “pay to play”, from the player’s perspective.

24.8 Assets and asset Flips

Pre-made assets are both a resource and a liability when it comes to video game development, depending on how

they are used.

Assets can be purchased by developers in a so-called “asset store” as a basis, a foundation upon which they can

build their own game, that’s how they are intended to be used and how they should indeed be used.

Sadly for every good thing, there must be a bad thing too: asset flippers.

Like “flipping a house” (minus the work), a group of assets can be put together (a bit like building blocks) into a

somewhat working final product without much (or any) work, making a so-called asset flip.

These products are usually sold to adventurous or unknowing consumers for a quick buck or people who hope to

make some money out of “out-of-game economies” (like Steam Cards or Tradeable Items), while the quality of the

final product is lacking at best or terrible at worst.

This circles back to “being consumer-friendly”: you’re not selling to a single person, but to a lot of people with

different backgrounds and expertise, and one of those will find out if your game is an “asset flip”.

Flipping assets is the equivalent of betraying your customers, as well as living entirely on the work of who made

said assets.

In short: assets are a good basis to work on your game (or make placeholders), but they need to be refined to elevate

the quality of your game.

24.9 Crowdfunding

Crowdfunding has been a small revolution in the world of the “idea to reality” business. You publish an idea, with a

working sample and some explanation and people who are interested in your idea invest money.

This makes transforming an idea into reality a lot easier and removes a lot of economic worries from the developers.

24 MARKETING YOUR GAME 538



2D Game Development: From Zero To Hero

Although for every good thing, there is always a pitfall: be it scams, things that utterly impossible to create or

mismanagement, not everything that gets “funded” is going to go well.

Here are some tips that will help you in this confusing world.

24.9.1 Communication Is Key

There is an Italian saying that can be translated to something like the following:

A good worker must work, know, know how to work and let know about their work

This underlines that you may have knowledge and practice, but communication is a key factor in the success of any

kind of work.

Remember to keep your backers updated at least weekly, avoid any language that could create misunderstandings

(someone couldmisunderstand a “cutesy language” for a “mockery of the backers”) and always justify your decisions.

After all you’re talking to your own investors.

24.9.2 Do not betray your backers

Your backers are your first and most precious customers: they’re the ones that bought your product “sight unseen”,

and invested money without knowing what the result will be.

Betraying your backers by taking unpopular decisions is a surefire way to see chargebacks and retaliation. If you

suddenly decide to change the store where your game will be published to something different than promised, you

better bring some very strong arguments for it.

Don’t lie, if you receive a cash infusion to publish your product on a certain platform (even as a “temporary exclu-

sive”), tell your backers about your decision and the reason being said cash infusion: some will understand, some

won’t like it, some will get angry. It’s still better than everyone getting angry when they find out you lied to them.

24.9.3 Don’t be greedy

Greed is never well seen in the world of crowdfunding, having many projects asking for funds at the same time does

not look good and opening a new crowdfunding campaign while a funded project has not yet been delivered looks

even worse.

Having many ways to fund the same project may seem a good idea, but it usually isn’t and gives out the impression

of greed, not even to give the chance of “people who are late” to fund your project.

Another mistake are the so-called “stretch goals”: encouragements to fund the project over its goal, in exchange for

more features. This is a serious mistake that can break an entire project if you are not able to manage it correctly,

because you’re trading money for more work, and more work usually means a delayed release.

Stretch goals should be very few, already planned in the time table and well thought out. If they are not, you will

pay for that mistake.

24 MARKETING YOUR GAME 539



2D Game Development: From Zero To Hero

24.9.4 Stay on the “safe side” of planning

A common mistake made by people who are getting started in development, is getting the times wrong. It happens.

It’s normal.

Planning a project is hard, and it’s way too easy to get it wrong and find yourself with a deadline knocking at your

door and having nothing functional in your hands.

When you plan, you should always double your project duration - in case of unforeseen events. Then you

should double that time again - in case of events you really cannot foresee.

24.9.5 Keep your promises, or exceed them

When you present your idea, with a working sample (usually requested by many crowdfunding websites), you should

keep in mind that people will use that sample as an “anchor”: a fixed reference for the minimum quality expected

for the product.

There is no “not game footage” that will save you. You promised, you have to deliver.

The only way to deliver a product that is different from the promised one, is to deliver something that is objectively

better than what you promised (better graphics, gameplay, sound, story, features, …)

24.9.6 A striking case: Mighty No. 9

I want to spend a few words on a crowdfunding campaign that failed to meet expectations and broke all the rules

we just saw.

The game was asking for a pledge of 900000$, clearing that objective in just 2 days, and managed to raise over

4 Million $ between kickstarter and PayPal. The game trailers showed great graphics, amazing soundtrack and

fast-paced gameplay.

Sadly the crowdfunding was really mismanaged, the campaign updates happened often but were kind of discon-

nected with the reality of development and the campaign was littered with SIXTEEN stretch goals (with more fore-

seen, given the graphics in the kickstarter page).

The product delivered was under the expectations, the graphics were nothing like the trailers, they looked poor and

cheap, the game was set to release in April 2015 but was delayed until June 2016.

The creator of the campaign was dreaming for a whole “Mighty No.9” franchise, with physical rewards and an ani-

mated series, but didn’t make the cut, even after receiving almost 5 times the asked money and a partnership with

the publisher Deep Silver.

What did this game get wrong?

• Too many stretch goals;

• Not delivered in the time promised (the game was delayed a lot of times);

• The final product was way under the expectations;

24 MARKETING YOUR GAME 540



2D Game Development: From Zero To Hero

• Too many platforms to release on (10 of them!);

• The official trailer’s “Make them cry like an Anime fan on prom night” - given that the game is very anime-like,

this sounds a lot like a mockery to the fans and backers;

• Before delivering the game, the kickstarter account used for Mighty No. 9 was used to create a new kickstarter

(Red Ash -Magicicada-), which does not look good when you’re late in delivering a product;

• Too much to do for a project in its beginnings: there were physical releases and rewards planned, as well as

an animated series and a whole franchise. This is too much of a gamble for a product that has still to get its

first sale.

If you want to know more about what happened, there are a lot of YouTube videos and articles talking about the

matter, it really makes you think about how you should behave when opening a crowdfunding campaign.

24.10 Engagement vs Fun

In the games industry we can sometimes come across the terms “fun” and “engagement” in a way that makes them

seem like synonyms, but they definitely aren’t.

Let’s start with the hardest to define: fun. Fun is really subjective, as humans each one of us has a radically different

concept of “fun”. The Oxford English dictionary comes to help us, in a way:

Light-hearted pleasure, enjoyment, or amusement; boisterous joviality or merrymaking; entertainment.

This is a really broad definition, but the concept of “fun” itself is really broad and complex, and cannot become more

than a few common points that we can define across games, thus making “designing fun” a form of art, instead of

just an act of engineering.

“Player engagement” is completely different, it has a well-defined metric: play time.

It is possible to artificially extend the players’ play time by tweaking the difficulty so that a player becomes frustrated

enough to keep trying, but not enough to drop the game, occasionally adding a prize to keep the player gaming on

(no matter how well-tweaked your experience is, without payoff players will leave sooner or later).

Is the player having fun when the experience is “tweaked” as such? Probably not, but the game is tailored so that

the play time is longer.

The fun goes down, but the play time goes up. Fun and engagement are not the same thing.

“Player engagement” (and thus “play time”) is one of the metrics that is used by big publishers to analyze and hook

players into in-game economies and lootboxes, the more the player engages with your game, the more you can

“advertise” lootboxes and in-game economies. These metrics take a bigger role when the game takes the form of a

“live service”.

24 MARKETING YOUR GAME 541



2D Game Development: From Zero To Hero

24.11 Streamers and Content Creators

When you’re developing or publishing a video game, you should not underestimate the power of so-called “content

creators”: streamers and YouTube stars, small or big, can turn your game from a niche project right into a cash

buster.

Let’s take some examples of games that, even though great on their own, would not be the same without streamers:

• Minecraft: this game is great on its own, but having a big number of streamers covering it definitely helped

its growth, so much that Mojang got bought by Microsoft Corporation;

• Fortnite: even though pushed by a big company like Epic Games, this game benefited from the streaming

community a lot;

• Fall Guys: published by Devolver Digital, this game cashes in on the “free for all/battle royale” genre, while

giving a quirky and funny twist to it. Being a quirky game on its own right makes it an ideal game to stream,

which definitely helped its sales.

I want to bring up one last example before delving into the nitty-gritty of the Streamers/Developers symbiotic rela-

tionship: Among Us.

“Among us” is a game that went from “unknown” to “cash buster” in a few weeks thanks to streaming. It got its

“prime time” in 2020, after streamers brought it to light: it’s a multiplayer, “Town of Salem”-like experience based

on deception.

The thing is, this game was released in 2018, and it was not doing too well on its own, until streaming came in the

picture. Being a very interactive game, this made it ideal for collaborations between streamer friends, striking a

nice balance between suspect, suspense and strategy. After streamers came into play, the sales exploded.

The Content Creator/Developer symbiotic relationship is one of the best win/win situations that can happen in the

video game development, let’s see how.

24.11.1 The game developers’ side

For a game developer, having a game covered by a streamer has one big advantage: free advertisement.

Some big streamers can gather between 15.000 and 35.000 viewers alone, giving your game a huge boost in cover-

age. Most of the times the game is bought by the streamer themselves, with their own money, so you already sold

a copy, but its worth is a lot more than meets the eye.

This boost in advertisement has consequences, if the game looks fun people will be encouraged to buy it, resulting in

a surge in sales. The more the people who know about the game, the more it spreads via “word of mouth”, furthering

your sales.

There is no “traditional advertising” that can bring that much attention to your game.

24.11.2 The Streamers’ side

For a streamer, having a new game is definitely advantageous: it’s fresh new content.

24 MARKETING YOUR GAME 542



2D Game Development: From Zero To Hero

Fresh content keeps a streaming channel interesting, engaging the public, which in turn generates advertising rev-

enue.

Such revenue can be spent by the streamer for better gear, but also new games which can bring even more fresh

content to the channel, thus keeping viewer engagement high.

24.11.3 Other entities and conclusions

This “symbiosis” doesn’t limit itself to game developers and streamers: advertisers earn because their products are

exposed, other game developers earn money by having their products bought to bring new content, gear manufac-

turers (keyboard, mice, monitors, cameras, lights, green screens, …) get revenue from streamers looking to improve

the quality of their streams. This is sector economic growth at its finest.

On October 22nd, 2020 the Creative Director at Google Stadia threw out the idea of making streamers pay a fee

(or a revenue share) to game developers (or publishers) for the content they stream. Given what we just saw,

and the great advantages it brings, having a “streamer tax” would remove content creators from the video game

environment, nullifying all the good that comes from them.

Small streamers would not be able to pay such “tax”, bigger ones would be willing to change their content (moving

away from videogaming) to not pay such “tax” and not suffer many losses: people are watching streams because

they like the streamer’s behaviour, reactions and jokes, as well as gameplay style and technique. If people watched

streamers and content creators for the games they play, views and subscriptions would not be as stable as they

actually are.

It would be changing a system that works for one that will, in the most absolute way, not work.

One of the best things you can do as a game developer is harnessing the power of the streaming community: reach

out to some small streamers, give out free keys, offer review copies, give out preview copies of DLCs, be friendly

and supportive. Small streamers may become big ones one day, and supporting mutual growth is a really satisfying

experience.

24 MARKETING YOUR GAME 543



2D Game Development: From Zero To Hero

25 Keeping your players engaged

There is no power for change greater than a community discovering what it

cares about.

Margaret J. Wheatley

Having a solid story and great game mechanics is only part of your objective: you want your players to talk about

your game or play it for as long as possible, this can be done in two main ways: communities and replayability.

25.1 Communities

Coding a game is just part of the whole game development ecosystem, engaging your community and having a

fruitful exchange of ideas and knowledge can be an amazing resource to keep your game inside players’ minds.

25.1.1 Forums

Forums (also known as “boards”) are websites where people (in our case players) engage in discussions on certain

matters (fittingly called “topics”).

Forums can be places where our players can share their fan work, discuss about the game and give suggestions.

Forums can be really useful a makeshift “service desk”, where players can report bugs and any kind of weirdness

your games may present to them.

25.1.2 Wikis

Wikis are a collaborative knowledge source where people write different pages about a certain matter.

In our case having a wiki about our game can contain various pages talking about:

• Characters

• Levels

• Bosses

• Enemies

• Walkthroughs

The great thing having many players collaborating on the same matter is that someone may be able find something

someone else missed, helping to build a better understanding of the game.

Searching for more information about a game can be a kind of game itself, building and strengthening a community.

25.1.3 Update Previews

Beta channels and update previews can be an incredible way to engage your most faithful fans as well as:

• Give you more testing ground: having many players test your game can give you further testing than any

small team and also let you test server load;

25 KEEPING YOUR PLAYERS ENGAGED 544



2D Game Development: From Zero To Hero

• Give you some market insight: having some different point of view can give you some insight on whether

your players will like the new features you’re preparing or not.

25.1.4 Speedrunning

When your game has a decent success (or even if it doesn’t!), there may be someone who wishes to challenge

themselves into completing it as fast as they possibly can, sometimes with the aid of glitches.

The speedrunning community can really change your game from “obscure” to “well known”, showing it at events

and gatherings, making a fun show out of it, for better or for worse (hey, not all donuts come with a hole!): even

when your game is “not so good” it can still be a fun oddity that people may want to speedrun.

Giving your own game a “speedrun mode” can prove beneficial, lowering the entrance bar to speedrunners and

letting them know that you are thinking about them and would like them to speedrun your game.

Figure 450: What a simple “speedrun mode” may look like

What could such “speedrun mode” contain? More features than you may think about:

• A game-wide chronometer: this will allow to register how long beating the game takes;

• A time for each section: usually called “splits”, they can feature the difference with older recorded times

for each single level or section of the game;

• Automatic Cutscene Skip: cutscenes are usually just a waste of time in speedrunning, somemay appreciate

the fact that in this mode cutscenes don’t play;

• Automatic chronometer stop: the chronometer can automatically stop at the end of the game, and the

game itself can identify when a section is finished, giving a consistent way of evaluating speedruns;

• Automatic save of best times: this will help speedrunners with the management of their times and remem-

ber their “PB” (personal best);

• An input monitor: this will show the buttons pressed by the speedrunner, it may prove to be an invaluable

tool if a new strategy is discovered.

Here’s how a more complex and advanced “speedrun mode” screen could look like:

25 KEEPING YOUR PLAYERS ENGAGED 545



2D Game Development: From Zero To Hero

Figure 451: What a mode advanced “speedrun mode” may look like

Some game developers went to the extent of not fixing some glitches for the sake of speedrunning.

25.1.5 Streaming

If your game is going to be free or open source, it may be a good idea to stream its building process! This could also

help attract some people who can give a hand in the future.

This is also a nice way to build a community around your game, get feedback and suggestions that could give your

game that edge that it might be missing.

25.2 Replayability

25.2.1 Modding

A great way to gather some more tech-savvy fans of your game is opening your game’s structure to editing, which

means enabling people to “mod” your game.

Mods are a great way to engage your community, and the are just so many types of mods that can be made:

• Data Packs - These add new user-created content to the game, such as:

– New Maps/Levels;

– Upgraded Textures;

– Upgraded Models (if the game is 3D);

– Upgraded Sounds;

• Feature Mods - These add new features to the game, such as:

– New game modes;

– HUD Modifications or upgrades (mini maps for instance);

– New options and settings;

– Additional/tweaked difficulty levels;

• Total Conversions: These take the engine of a game (like the first DOOM) and make a completely new game

out of it, examples are “Castlevania: Simon’s Destiny” and “Sonic Robo Blast 2”.

Refining and giving out your own map editor can be a really great way to make your game more “open to editing”

25 KEEPING YOUR PLAYERS ENGAGED 546



2D Game Development: From Zero To Hero

and allow modders to enjoy working on it, after that, if your game structure allows it, you could document the engine

and allow people to create their own masterpieces, maps and fan-made stories.

Random Trivia!

Even after over 30 years since its release, the original DOOM is still receiving a lot of

support from modders, and not only modders! John Romero has released “Sigil” in

2019, a megawad that is an “officially unofficial” 5th episode. And in 2023 “Sigil II”

was released. That’s quite a lifespan!

25.2.2 Fan games

If your game becomes so famous that you manage to get a full franchise out of it, fan games are bound to happen:

small games that take inspiration from your storyline and take different directions, according to the creators’ will.

This is a great opportunity to test how your current game is liked, and how people would like for its story to develop.

Some developers prefer to squash fan games under the Digital Millennium Copyright Act (DMCA) and get them

removed, to avoid “tarnishing the franchise”, some others instead prefer turning a blind eye, and some even go to

hire the fan game creators to make a fully fledged official game.

In my humble opinion, fan games are good, they signal the community’s desire for more, and you should probably

play them too, new ideas come from comparing your own thoughts with other peoples’.

25.2.3 Mutators

Your game has a well-defined gameplay, everything seems balanced and all is well, until you start feeling that the

gameplay has become stale and needs a shakeup.

This is an absolutely normal feeling that you’ll get after testing your game for a while, and it will be the feeling that

some players will get after playing your game for a long time.

This shakeup can come in the form of “mutators”, small options that change some rules of the base game, making

it easier, harder or just adding some cosmetic effect. This gives a layer of customization that players will appreciate,

as well as either a challenge or a relaxing (or silly) time.

Some examples of mutators can be:

• Instant Death: There is no energy bar, you die as soon as you’re hit. This is a good idea for players who

want a challenge;

• More enemies: This mutator changes the enemy spawn points to spawn more enemies (can be double the

amount, for instance), another way to give a challenge to players;

• Forced weapon/build: This mutator forces the player to start with a certain weapon or build, thus limiting

their choices and forcing them to play differently from the way they’re used to;

• Draining Health: The energy bar drains as time passes, making the player search for health pickups to be

able to survive;

• Limited powerups: Only certain powerups can spawn;

25 KEEPING YOUR PLAYERS ENGAGED 547



2D Game Development: From Zero To Hero

• Changed assets: Some games like putting a “big headmode” (where characters have comically huge heads),

or change the normal game sounds to silly ones, this could be a way to change up the game without changing

its gameplay;

• Power Fantasy: Make the player hilariously overpowered, many players enjoy the feeling of power as they

mow down dozens of enemies effortlessly, couples well with the “more enemies” mutator to counterbalance

the difficulty (thus having more enemies, but they are easier to beat);

• …

These mutators are usually compatible with each other, so you can have an overpowered player, but instant death,

for instance.

25.2.4 Randomizing

In recent years, a certain kind of hacks for old games (mostly built around the Legend Of Zelda and Metroid series)

that mix up the gameplay by mixing up the item locations, with a certain logic to avoid unbeatable games.

If your game has a somewhat linear story and no “roguelike” elements, you may be able to extend it replay value

by adding a “randomized mode”. This new mode would have some logic implemented to avoid soft locking[g] a save

file and mixes up the items and powerups, usually making the game a bit more challenging.

25.2.5 New Game+

A good way to lengthen the life span of your game is adding a “New Game+” mode. Let’s see what it is.

New Game+ is a mode that gets unlocked when you finish a game on a certain save file, this mode allows you to

re-play the same story and game with some additions (hence the “plus”), those additions may be multiple, like:

• Keep your inventory/equipment: this is especially handy in story-driven, multiple-path/multiple-ending

games. This allows the player to gloss over the fighting and instead concentrate more on “taking a different

path” in the story. Let’s not understate the willingness of a player to play a “power fantasy” by mowing

through enemies in a fighting-heavy game, though;

• Keep your statistics: this is very useful, in a similar way to the “keep your equipment” bullet point, just

more specific to RPG-style games;

• Unlock new items: this makes the game a bit different by allowing to use brand new, previously locked,

equipment in the new “run”;

• Make the game more challenging: this makes every new run a harder challenge to the player, by making

enemies stronger, more resistant or just by adding more enemies in the various areas. A good idea is also

making making enemies from mid and end-game appear earlier.

25.2.6 Transmogrification

We all know that looks matter, and there are people who are willing to “pay extra” to look how they want. This is

especially true in MMO games, where (sadly) peer pressure tends to be quite high.

Say hello to “Transmogrification” (sometimes called “transmog”, “tmog”, “xmog” or just “mog”): it’s a system that

25 KEEPING YOUR PLAYERS ENGAGED 548



2D Game Development: From Zero To Hero

allows players to change the look of a weapon, armor or anything to make it look like another weapon, armor or

whatever.

In short, transmog solves the issue that is represented by the following sentence:

This thing looks so cool! But its stats are horrible…

Using transmog you can have both the power of your best armor (or weapon, or mighty stick) with the looks of the

(less powerful) armor (or weapon, and don’t forget the stick) that just looks so cool.

Transmogrification can be implemented quite easily by allowing each instance of an object have a customizable

sprite, instead of locking it behind the item itself. You just have to remember to save the skin used by each object’s

skin in your inventory/save file.

Design-wise, you should make transmogrification quite challenging to get, since it’s a “quality of life” enhancement,

but at the same time it shouldn’t be so frustrating that the players just give up trying.

Any decision that will be frustrating to the player (maybe to “encourage” them to make use of microtransactions)

will always come back to bite you.

Remember: you are not a AAA developer or publisher, you can’t afford to take the hit of these decisions:

being too greedy can completely destroy a good game’s performance.

25 KEEPING YOUR PLAYERS ENGAGED 549



Part 8: Learning from others and putting

yourself out there



2D Game Development: From Zero To Hero

26 Dissecting games: three study cases

I’m a writer, so I like dissecting things.

Hal Sparks

In this section we will talk about three games, one bad and two good, and study their decisions closely, how a bad

game inconveniences the player or how a good one reduces the space between the player’s thought and the action

on the screen.

This is not intended as a section to diss on a bad game or sing the praises of a good one, it is meant to be a study

on how bad decisions pile up into what is universally recognized as a “bad game”, while there are so many good

decisions that need to be taken to make a “good game”.

Note!

This section will contain spoilers of the games. This is necessary to understand them

completely.

26.1 A bad game: Hoshi wo miru hito

26.1.1 Introduction

“Hoshi wo miru hito” (roughly translated to “stargazers”) is a Japanese turn-based RPG for the NES/Famicom, set in

a future where everyone has “Extra Sensory Perception” (ESP) and where a supercomputer has enslaved humanity

via brainwashing.

The story may sound thrilling but the game is not. Let’s see why this game is also known as “Densetsu no Kusoge”

(I will leave finding the meaning to the reader).

26.1.2 Balance Issues

26.1.2.1 You can’t beat starter enemies

At the beginning of the game, you deal only 1 point of damage per attack, way less than the health of the common

starter enemy. This, together with your starting health points, make the starter enemies unbeatable most of the

times. Speedrunners usually end up resetting in case they get an enemy encounter at the beginning of their run.

26.1.2.2 The Damage Sponge

One of the characters, called “Misa”, is the only character that is able to walk on damage tiles without getting hurt.

There is no explanation on the reason behind it.

This means that you have to die multiple times before finding out that only one of the four characters in your party

is able to cross certain floor tiles, that may be no different than the other tiles.

26 DISSECTING GAMES: THREE STUDY CASES 551



2D Game Development: From Zero To Hero

26.1.2.3 You can’t run away from battles, but enemies can

In this RPG you lack the option to run away from battles.

Enemies instead have a chance to run away from battle when their health points drop below 25% of their original

health. Talk about fairness.

The “escape” option is instead hidden behind the “teleport” spell that you acquire after leveling up, in addition such

spell is really weird in its way of working.

After selecting the “teleport” spell, you select a team mate to target such spell to, the spell can either succeed or

fail:

• If the spell succeeds, the selected team member escapes the battle, while the others continue fighting for the

turns that follow;

• If the spell fails, the whole team gets ejected (read “escape”) from the battle.

This means that the teleport spell is more beneficial (4 times faster) when it fails than when it succeeds.

Note!

To bemore precise, if the teleport spell succeeds and youmanage to get each character

(one by one) out of the battle, you keep your position on the current map. If instead

it fails, your entire party will be kicked from the battle and you will find yourself at

the beginning of the map. In practical terms, that doesn’t make much of a difference,

because you will probably need to get to the nearest healer anyway.

26.1.2.4 Statistics

There are some statistics that make sense in other RPGs, but do not in this game.

For instance the “defense” statistic scales so poorly that you barely notice its effect in this game.

In other games the “speed” statistic is tied to the order of attack (from the quickest to slowest character), but in this

game the order is always “player’s team” first, and “enemy team” after.

In conclusion, in “Hoshi wo miru hito”, defense is effectively useless while speed is not even implemented.

26.1.3 Bad design choices

26.1.3.1 You get dropped in the middle of nowhere

In the NES era, it was common thing to have the story written in the manual. To save space on the cartridge, the

beginning story elements were reduced to a minimum or completely removed, but in most games you still had a

sense of where to go.

In this game, you just get dropped in the middle of nowhere, with no direction whatsoever. And you don’t have the

“Legend Of Zelda” style of exploration, since any enemy can make minced meat of you.

26 DISSECTING GAMES: THREE STUDY CASES 552



2D Game Development: From Zero To Hero

As a comparison, Dragon Quest, a game from the same period, had at least a hearing with the king to still introduce

you into the story.

26.1.3.2 The starting town is invisible

The previous point is not really true, you actually start near a town, but such town is invisible.

The game makes a really lousy attempt to justify the fact that the town is invisible, but such explanation falls

absolutely flat.

This just adds to the confusion of the story, as well as the lack of direction given to the player which can result in

frustration and abandoning the game.

26.1.3.3 The Jump Ability

At level 1, you acquire a “jump ability”, that allows you to jump over certain tiles, like rivers. The issue is that such

tiles are not distinguishable in any way from all the other tiles.

So you will find yourself mashing your main character’s body against various tiles, trying to find which ones you can

skip with your jump ability, and probably die in the process by finding an unrecognizable damage tile.

26.1.3.4 Items are invisible

All items in the game are invisible, including all plot-crucial and revive items. The only thing telling you that you

found an item, is a “beep” sound when you collect them.

This further piles up with the lack of direction the player faces in this game since the beginning. While it’s under-

standable that the limited size (and therefore duration) of NES/Famicom games kind of forced the developers’ hands

into making harder games (to make them last longer), but introducing confusing of flat-out unfair mechanics is just

bad design.

26.1.3.5 Item management

Usually when you buy a new weapon inside an RPG, you get to un-equip the old weapon and substitute it with the

new one, then eventually sell the old one to recover some currency. This gives the game’s challenge new dimensions:

item management and a simple economy system.

Well, this game instead lacks any kind of item management: every time you buy a new weapon, the old one will be

automatically discarded. You cannot sell old weapons, and the auto-discard removes the possibility of trying a new

weapon and in case go back to the old one.

And you cannot un-equip items and weapons.

26.1.3.6 Buying Weapons makes you weaker

When unarmed, from level 1 onward, the fight option lets you deal a damage equal to a random number between 0

and 4 (bounds included), regardless of the enemy defense stat, which is a real low amount of attack power.

26 DISSECTING GAMES: THREE STUDY CASES 553



2D Game Development: From Zero To Hero

When armed, the enemies defense values are taken into account instead, which means that most of the time, the

boosted attack power given by the weapon doesn’t overcome the enemies defense enough to make using weapons

an advantage.

In few words: buying weapons makes you weaker.

And, as stated before, you cannot un-equip weapons, so your game session is probably ruined.

26.1.3.7 Enemy Abilities

Many enemies have an ability which is essentially a permanent, non curable in battle, paralysis + poison combo that

will make your battle really hard and frustrating. That means that you will lose all the turns of the character that has

been hit with such status effect.

And in case all your party members are hit with such status effect, you don’t game over immediately, instead you

will keep losing turns while the enemies slowly chip away at your party’s health until you eventually game over.

Such effect lasts outside of battle too, so every step you take the affected party members will lose health until you

see a healer.

26.1.3.8 You can soft lock yourself

In the vast majority of games, keycards are usually a permanent item that can be reused after finding it. In other

games instead doors opened with keycards stay open for the rest of the game.

In this game, keycards have to be bought for quite the price, and disappear on use, and there is a serious chance

that you softlock yourself somewhere if you don’t buy enough.

26.1.4 Confusing Choices

26.1.4.1 Starting level for characters

This may be minor, but your characters start at level 0. Simply confusing and weird from a player standpoint.

As a programmer I find it quite amusing, though.

26.1.4.2 Slow overworld movement

The movement in the overworld is really slow, at around 1 tile every 2 seconds. This is really confusing, since the

NES/Famicom is definitely capable of higher performance.

This is not due to lag or performance issues, it is a conscious decision to make the characters walk so slowly.

26.1.4.3 Exiting a dungeon or a town

Every time you exit a town or a dungeon, you won’t find yourself at the entrance or exit of such place (like you’d

expect), but instead you will find yourself at the default spawn of the world you’re in.

26 DISSECTING GAMES: THREE STUDY CASES 554



2D Game Development: From Zero To Hero

So you may find yourself at the beginning of the game or in some not easily recognizable point of the map.

26.1.4.4 The Health Points UI

In the battle UI, the health of your team members is shown on top of their pictures, as an overlay.

Given the size of the font and the size of the pictures, only 4 digits fit. Given the game’s health scaling, there is a

serious chance that you get your health points to 5 digits.

The solution adopted was to drop the last digit of the health counter in all cases (even if your maximum health has

less than 5 digits): so if you see “15” your health is actually between “150” and “159”.

Also for some reason, if your health is lower than 10 points, your health shows as 0 (my speculation is that is would

be written as “00” to “09”).

26.1.5 Inconveniencing the player

26.1.5.1 The battle menu order

In the great majority of turn-based RPGs, the options are shown in the following order:

1. Fight

2. Magic (ESP)

3. Items

4. Escape

This is done in order, from most used (fight) to least used (escape).

In “Hoshi wo miru hito”, the menu order presents the ESP option as the first option, selected by default, so most of

the time you will have to move your cursor to the “fight” option and select it. This compounds with another problem

exposed below.

26.1.5.2 Every menu is a committal

There is no “back” option in any menu, this means that every menu is a committal and you can’t back off from any

decision, even accidental ones.

That means that if you accidentally select the ESP option in battle and you don’t have enough energy/mana to

execute any attack, you will end up losing a turn.

If you select the wrong ingredient to make a potion, you most probably will have to waste that ingredient.

26.1.5.3 Password saves

In the NES/Famicom era, games that made use of battery-backed RAM modules to save game progress were rare.

This means that the most used save method was using “passwords”: a jumble of letters (and eventually numbers

and symbols) that needed to be written down precisely, or you wouldn’t be able to restore your progress.

26 DISSECTING GAMES: THREE STUDY CASES 555



2D Game Development: From Zero To Hero

This game’s passwords are massive and use a mix of katakana Japanese characters and English alphabet, (while

the rest of the game uses hiragana characters), which can be confusing.

Also passwords don’t really save your progress “as is”: your levels are saved in multiples of 4 (so if you’re level 6,

you will restore your progress but be level 4) and money is saved in multiples of 255 (if you have 3000 gold, you will

restore your progress but have 255 · 11 = 2805 gold)

26.1.5.4 Each character has their own money stash

In most RPGs that feature a party, there is a shared pool of money that is used for all expenses, this may not be

“realistic” but it’s a good enough approximation that has a major upside: it is practical.

This game instead inconveniences the player further by giving each party member their own separated money stash.

This is realistic and sometimes used in more modern RPGs, but it is not practical: every time you need to purchase

potions used by the whole party (remember: there is no item management) you will have to switch characters or

you’ll find yourself running out of money.

26.1.6 Bugs and glitches

26.1.6.1 Moonwalking and save warping

This game doesn’t interpret inputs as well as it should, so if you press the up and down buttons at the same time,

you will find yourself “moonwalking”.

Besides the perceived coolness of such move, moonwalking will allow you to go through obstacles, and eventually

corrupt the graphics of the tilemap (like loading the right side of the map on the left side of the screen).

This is due to the game checking one direction for wall collisions, but moving the character in the opposite direction.

Pressing up and down at the same time on a controller is not possible, due to the fact that the NES/Famicom D-Pad

does not have separated buttons, but if you connect any accessory that allows you to connect up to 4 controllers,

the game won’t be able to distinguish between the inputs from Controller 1 and the ones Controller 3.

A side effect of moonwalking, used in speedrunning is “Save Warping”, you are able to manipulate the tilemap and

your position via moonwalking, then save and voilà you will be warped to another point of the map.

26.1.6.2 The final maze

The final maze is divided in multiple floors, and is the greatest proof of how rushed this game was.

In the first floor of this maze, which is supposed to be really hard, no encounter tiles have been programmed: this

means you won’t have to fight anything on this floor. Also no “wall collision” was programmed either, so you can go

through the maze walls with the same ease you walk on the floor.

In the other maze floors, encounter tiles were programmed, but still no wall collision was implemented, and since

you can’t encounter anything on walls, you can just minimize your encounter chance by taking a stroll inside the

maze’s walls.

26 DISSECTING GAMES: THREE STUDY CASES 556



2D Game Development: From Zero To Hero

26.1.6.3 The endings

This game, very ambitiously I shall say, features multiple endings. Towards the end you have to take a very hard

decision:

• Join your enemy and leave humanity and live peacefully

• Leave the disputed territory and let the enemy live in peace

• Fight to gain control over the disputed territory

This can result in four different endings, which is really ambitious for a NES/Famicom game. If only the final boss

fight was implemented…

If you choose to fight, you will automatically lose the battle and the game will end with a “bad ending”.

26.1.7 Conclusions

“Hoshi wo miru hito” is a product of its situation, rumors state that this game was programmed by only one person,

and rushed beyond belief so it could compete with Dragon Quest in some way. For the sake of fairness, I will assume

that this game was made by a team.

The game has interesting ideas for its time: a cyberpunk theme, Extra-sensory powers, the character sprites “grow

up” as they gain levels, the enemy sprites are artistically well-done, … but the execution is littered with problems,

obstacles to the player, bad design decisions and bugs.

It seems that the developers were not familiar with the NES/Famicom architecture, game designers weren’t really

familiar with game design concepts and play testers were completely nonexistent.

Even though this game has earned the status of “legendary bad game” (not a literal translation of “Densetsu no

Kusoge”), “Hoshi wo miru hito” has gained a cult following that is really devoted, to the point that a hacker took upon

themselves the daunting task of patching the game and redraw the graphics, as well as rebalancing the weapons

and fix the walking speed.

There is even a “remake” called “STARGAZER” for windows.

26.2 The first good game - VVVVVV: Slim story and essential gameplay

VVVVVV is a 2D platformer created by Terry Cavanagh that features essential gameplay mechanics, a slim story that

gives the player a reason to explore the game world and get to the end, as well as a satisfying level of challenge.

Let’s see what makes this a good game.

26.2.1 A Slim story that holds up great

VVVVVV’s story is as essential as it gets: you’re in a space ship, you run into some trouble and try to teleport out of

the ship. Now you and your crew are scattered in a new dimension. Your mission is to rescue your crew and explore

the new dimension you’re in.

26 DISSECTING GAMES: THREE STUDY CASES 557



2D Game Development: From Zero To Hero

This is the story, it gives you enough of a reason to move from one level to the other, without being too burdensome.

After you finish the game, you are free to explore the entire “dimension VVVVVV”, searching shiny trinkets to unlock

a final secret and learn more about the dimension you’re in.

26.2.2 Essential gameplay: easy to learn, hard to master

In VVVVVV you can move left and right, but you cannot jump: you can only flip gravity. This, combined with the

plentiful quantity of spikes, makes for a game that is easy to learn (it’s just 3 buttons) but hard to master (you will

find yourself dying over and over on the same screen).

The gameplay is so simple and well-implemented that it’s really hard to get mad at the game: if you die and respawn,

you know it’s your fault. The great majority of time, it is evident. When you learn what “not to do”, the rest becomes

a lot easier. Enough so that you don’t get stuck in a screen for more than a few minutes.

Checkpoints are plentiful and well distributed, so you won’t end up going back too far if you die.

26.2.3 Diversified challenges

Each zone of the game (there are 6 in total, plus 2 intermissions and the finale) features the tight gameplay explained

above, and sometimes add a new gimmick to the mix.

Let’s explore those new gimmicks quickly:

• In the “Warp Zone”, when you exit the screen on one side, you will re-enter on the opposite side: this means

that if you fall on the bottom, you’ll come out the top. This goes on until you reach the exit of the screen;

• In “the lab”, there are lines that make you invert your gravity when touched. This can end up being a bit

confusing at first, until you get used to the mechanic. After that you’ll be bouncing around with no issue;

• In “the tower” the level automatically scrolls vertically: you can’t go too slow or too fast, or spikes will come

out of the top/bottom of the screen to kill you;

• In “intermission 1” you are followed by a crew mate: if you’re standing on the ground, they will walk towards

you. If you’re on the ceiling, they will stay still. This introduces a new layer of difficulty and management;

• In “intermission 2” (also known as “the gravitron”) you are kind-of-followed by a crew mate, but in reality

you’re playing alone. You will have to survive 60 seconds (with a checkpoint every 5 seconds) between two

gravity-inverting lines, while items are shot at you.

In the finale, you’ll have to put everything you have learned to the test (“warping”, “bouncing”, dealing with auto-

scrolling levels, …) to save yourself from being a prisoner of dimension VVVVVV.

26.2.4 Graphics

The graphics try to imitate the Commodore 64 (there is even a fake C64-style loading screen!); but they don’t give

up special effects like flashes, animated sprites, animated tiles, screen shaking, and fully moving backgrounds.

Even though the graphics are superior to what a Commodore 64 would be able to output, the special effects used

still fit the chosen style and never really feel “out of place”.

26 DISSECTING GAMES: THREE STUDY CASES 558



2D Game Development: From Zero To Hero

26.2.5 Amazing soundtrack

The soundtrack in VVVVVV is definitely one of the game’s highlights: the chiptune-style songs that characterize

every zone are catchy and so memorable that you will find yourself humming the tunes from time to time.

Each tune fits the zone it’s used in, and kind of “tells a story” of its own: from “Passion for exploring” (the overworld

theme) to “Predestined Fate” (used in intermissions and, in a remixed fashion, in the finale).

26.2.6 Accessibility Settings

VVVVVV is as accessible as it gets: there are a ton of accessibility features crammed in such a small game. Let’s

take a look at them.

• Invulnerability in case the challenge is too much, or you don’t want to feel challenged all the time. This also

helps people who want to enjoy the game, but can’t due to mobility problems;

• Slowdown mode some people with mobility issues or slower reflexes may benefit from playing the game at

75, 50 or even 25% speed;

• No screen flashing or shaking some people with photosensitivity may have huge issues with the flashing

and screen shaking, there are options to disable these effects and make the gamemuch safer for those people.

It also helps if flashing and screen shaking just annoy you or simply give you headaches;

• No animated backgrounds this may help with visual clarity or if the movement in the background gives

you issues, like headaches.

26.2.7 Post-endgame Modes

After finishing the game, VVVVVV still offers some challenges. If you haven’t collected all the trinkets, that is a good

start, since they’re hard to get and will reveal a secret back at the ship.

VVVVVV offers other game modes too, after you finish the main story:

• Time trials: you can replay any level, but you have to finish it under a certain time limit.

• Flip mode: the whole game is flipped vertically;

• No death mode: the entire game must be played without dying, you cannot save, there are no checkpoints

and your companions in intermissions cannot die either;

• Intermissions mode: replay all completed intermissions, you can choose your companion too.

26.2.8 User-generated content

If the main story didn’t satisfy you enough, VVVVVV features a level editor. The game already includes some selected

user levels you can play, each with its own story and mechanics.

This also means that you can access the level editor yourself and create your own adventure from scratch, featuring

the mechanics and characters of the original game.

26 DISSECTING GAMES: THREE STUDY CASES 559



2D Game Development: From Zero To Hero

26.2.9 “Speedrunnability”

Being an exceptionally difficult game, as well as the simple controls, the game has attracted an active and passionate

speedrun community. The first playthroughs can take up to a couple hours, but an average speedrun can take less

than 20 minutes!

The barrier of entry (usually for “glitchless” speedruns) is very low: you just need to go fast and die as little as

possible. There aren’t too many tricks to be learned, and those are usually quite simple, with very few exceptions.

26.2.10 Characters are memorable, even if you don’t see them a lot

Even though the characters are not a continuous presence in the game, each of them is memorable: they all have

very different colors, and different characters.

For instance: Vermillion is adventurous and always excited about exploring, after rescuing him, you will find him

here and there in the overworld, sometimes even in the zones where other crew mates are stuck.

Victoria is a bit of a crybaby, very emotional and gets depressed very easily, she’s always feeling blue (and blue is

her color too) and sniffles a lot when talking.

Verdigris is technical, being the ship’s technician (you will find him working on the ship’s antenna after rescue).

Professor Vitellary is analytical and curious (if you bring him into an intermission, he will express marvel at what’s

happening).

26.2.11 Conclusion

VVVVVV is a small game (as I said, it can be completed in less than 20 minutes if you’re quick), but it gives a lot of

options for everyone. Lots of accessibility, replayability and “speedrunnability”. Custom levels and the level editor

are the cherry on top of a game that is feature-complete and fun to play.

26.3 Another good game - Undertale: A masterclass in storytelling

Undertale is an RPG game created by Toby Fox that features some unique mechanics and masterful story telling.

We’ll take a deeper dive into the game immediately!

26.3.1 The power of choice

The game features a huge innovation in the field of RPGs: you can run the entire game without killing anything. In

fact you are encouraged from the beginning to do so.

This innovation is not forced onto you though, you can play it as any other RPG out there (but you will miss a lot of

the game, more on that later).

26.3.2 The game doesn’t take itself very seriously (sometimes)

Undertale is a very unique game that doesn’t take itself very seriously, there are 4th wall breaks, bad puns, jokes,

worse puns and more. This gives the game a very lighthearted tone. That is if you’re doing a “pacifist run”.

26 DISSECTING GAMES: THREE STUDY CASES 560



2D Game Development: From Zero To Hero

The game becomes more somber the more you lean into a “neutral” or even “genocide” run.

This gives the game a lot of layers and depth, making each “type of playthrough” a different experience.

26.3.3 All the major characters are very memorable

Each major character is extremely memorable, and will be etched into your memory for the entire game (and prob-

ably part of your life too), I can recall practically all of them on the top of my head:

• Toriel, a gentle and motherly monster that loves puns and jokes;

• Sans, a skeleton that loves bad puns and “knows shortcuts” to every place in the game, somewhat lazy (that

is explained in a lot more detail in genocide runs);

• Papyrus, Sans’s brother. Hates bad puns, loves spaghetti and wants to enter the royal guard. Has high self-

esteem;

• Undyne, a brave, brash muscle-for-brains fish girl that has actually a very kind heart;

• Alphys, a pessimist doctor with very low self-esteem, even though she’s essentially a genius. Somewhat a

nerd too;

• Mettaton, the robot that wants to become a TV superstar,

• Muffet, the leader of the spider bakery,

• Asgore, the “final boss” that you have to face. Regretful of his actions and past;

• Flowey, a yellow flower that can’t have feelings (this is explained well in the pacifist run).

26.3.4 The game continuously surprises the player

The game is able to surprise the player continuously. At a certain point the player realizes that the game is playing

by different rules than expected: the game (as a piece of software) and the world become blurred when Asgore

breaks the “mercy” option in a pacifist run.

From that point on, the player realizes that the UI, saving, loading are all characteristics of the world itself, and not

of the game: each playthrough is treated like a timeline, and each reset is a new timeline (although some characters

may have memories from previous playthroughs).

It feels like the world inside the game actually exists.

26.3.5 Player choices influence the game

Each run can be a bit different than any previous run, but they can all be classified into 4 categories.

• Neutral runs these are the runs that entail killing some enemies, but not everyone. The ending of this kind

of runs is not satisfactory, and the game loses its meaning. The game will suggest (via its characters) to try

a different approach;

• Pacifist runs these runs entail not killing anyone, this will bring an extended playthrough and ending, ex-

plaining a lot more about the world (and the “meta” nature of the game);

• Genocide runs these runs entail killing everything, even the “random encounters”, this will bring a different

ending and will permanently change the game, even in successive runs (unless you physically delete your

26 DISSECTING GAMES: THREE STUDY CASES 561



2D Game Development: From Zero To Hero

save file from the game folder).

• Partial/Aborted Genocide these runs entail killing everything, besides one of the main characters. This will

bring the player a different ending each time, but none of them will be “good”.

26.3.6 Great (and extensive!!) soundtrack

The soundtrack features over 100 (a hundred!!) tracks, each of them is unique in itself and memorable. Each zone

has its own fitting theme, as does each boss (so much so that many of them have different themes for normal and

genocide).

It’s hard to describe the soundtrack here, so I suggest you to try the game or at least listen to some of the most

famous tracks.

26.3.7 Conclusion

I tried to keep this analysis vague so not to ruin the game too much to the people who didn’t play it. The pacifist

story is extremely well-written and ties extremely well with the genocide one, together giving two sides of the same

world.

The fact that such world is working with the mechanics of a video game is a surprise to the player, who will be a bit

confused at the beginning but will soon understand things that may have felt weird before.

26 DISSECTING GAMES: THREE STUDY CASES 562



2D Game Development: From Zero To Hero

27 Project Ideas

In theory, theory and practice are the same. In practice, they are not.

Albert Einstein

This section tries to give you some ideas for some small projects you can try to do by yourself.

The projects will be put in order of (perceived) difficulty and each one will use a larger set of skills you have learned.

Each project will have three levels of completion:

• Basic: This is the baseline to consider a project “complete”, this is also the set of requirements the projects

are sorted by;

• Advanced: This is more of a challenge, requiring more advanced skills and techniques. If you complete this

level, you can consider yourself comfortable with most of the matters treated in the project;

• Master: This can be a real challenge, requiring skills and techniques that may not be taught in this book, but

such problems can be solved with a bit of planning. If you complete this level successfully, pat yourself on

the back and keep up the great work!

A title screen for each game is not required or necessary, but if you want to make one, feel free to do so.

27.1 Tic-Tac-Toe

X

X
OO

Figure 452: Example picture of Tic-Tac-Toe

Tic-Tac-Toe is a “finite” game, there are a finite number of choices and strategies but that makes it ideal for a simple

project.

The objective of the game is to score 3 of your own symbol (either an X or an O) in a row or in diagonal, in a 3x3 grid;

the players take turns and put their symbol on the game board in an empty spot.

27.1.1 Basic Level

Make a simple Tic-Tac-Toe style of game, where the mouse commands both players (so it alternatively switches

between X and O), the game should be able to detect winning conditions for a certain symbol or a draw.

Skills required:

27 PROJECT IDEAS 563



2D Game Development: From Zero To Hero

• Drawing to a screen;

• Event handling;

• Mouse Events;

• Winning/Losing Conditions.

27.1.2 Advanced Level

Make a computer-controlled player, by making the mouse write only the X symbol, while the computer will randomly

put the O symbol onto a blank spot. The game should still be able to detect winning conditions for each player, as

well as a draw.

Furthermore, the game should enforce turns, so that the human player is not able to put their own symbol when it

is the computer’s turn.

Further skills required:

• Random number generation;

• Coding basic game logic.

27.1.3 Master Level

Improve your computer-controlled player by making it actually seek for a way to win against the human player. The

AI should do these checks, in order:

1. “Can I make a 3-in-a-row in a single move?”: this means that the AI has 2-in-a-row with an empty space

available. The AI should put their symbol in the empty spot to win.

2. “Is my adversary about to make a 3-in-a-row?”: this means the human player has 2-in-a-row with an empty

space available. The AI reaction should be to put their symbol in the empty spot.

3. If none of those cases happen, then make the AI fall back to a “random choice”.

The AI does not need to be perfect, just mildly challenging.

Tip!

To some people, points 1 and 2 may be problematic, in the case that two among rows,

columns or diagonals satisfy one of those conditions.

If both satisfy condition 1, there is actually no problem, the AI would win anyway: the

AI can choose randomly.

In case 2, the AI should check if there is a way to block both “potential wins” in one

move, but it is a perfectly acceptable solution to consider the case a loss for the AI and

just choose randomly.

27.2 Space Invaders

Manufactured by Taito in 1978, the arcade Space Invaders is probably one of the most known games around for its

historical value.

27 PROJECT IDEAS 564



2D Game Development: From Zero To Hero

Figure 453: Example of a “Space Invaders”-style game

Your objective is to prevent a horde of aliens from landing, by shooting them with your monochrome laser cannon.

The concept is deceptively simple, but the implementation can be really complex if you look more thoroughly. The

more aliens are killed, the more the remaining ones descend faster, there is a bonus ship that pops out at random

intervals, the aliens shoot back at you, there are destructible “shields” to give you some defense from the alien

bullets, the win and lose mechanics…

Random Trivia!

The aliens getting faster wasn’t initially intended in Space Invaders, the position of the

aliens gets updated every frame, but the hardware couldn’t process all the entities fast

enough. The more aliens got killed, the less entities had to be processed per frame,

making the aliens move faster.

Instead of coming up with a solution, this “bug” was kept as a challenging “feature”

27.2.1 Basic Level

In the basic level, we will just create a static, unarmed horde of aliens menacing our base (although being static it

won’t be much of a threat), we can shoot out projectiles at them and they disappear when they’re hit, adding some

points to our score.

Since our unwanted alien guests are not much of a threat, we won’t need to put up any shields to defend against

bullets. When all the aliens are dead, we win the game.

Skills Required:

• Drawing on screen;

• Collision Detection;

• Keyboard Input;

• Bullets;

• Score management;

• Winning conditions;

• Managing entities.

27 PROJECT IDEAS 565



2D Game Development: From Zero To Hero

27.2.2 Advanced Level

For the advanced level, we will make our alien foes more menacing by introducing movement and making the shoot

at random intervals towards our laser cannon. The aliens do not need to accelerate as in the original game (but it’s

not really difficult to implement).

When an alien touches the ground, we will lose the game. Thus making the game a bit more difficult to manage (as

well as to play).

We will also introduce a bonus ship that appears on top of the alien horde, floating from left to right, awarding a

bonus when successfully hit.

Tip!

To make the bonus ship, you may be tempted to create an entirely new object, but at

the same time a “bonus ship” IS-AN “alien ship”, which would call for subclassing.

If you separate behaviour from the objects well, with methods, you can use subclassing

to “change the ship’s behaviour” by overriding the update() method.

Further Skills Required:

• Timers (for the ship movement, and if you want, the bonus ship);

• Random number generation (for the bonus ship and the alien bullets);

• Subclassing;

• Losing conditions.

27.2.3 Master level

For the master level we will make the shields, which are complex to code in the way of the original game, so we will

“cheat”.

Our shields will be “force fields” which can withstand 3 shots before getting disabled: such shots can come from the

aliens or our ship. After 5 to 10 seconds, the shields will come back online and ready to stop bullets again.

Like the original game, the shields can block both our and our enemy’s bullets, making for a more challenging

gameplay.

For an even more challenging gameplay, we can (rarely) make a random ship detach from the horde to try and

attack us directly: on such event, the ship will start shooting more often and move towards our laser cannon, before

going back into position (a bit like Galaxian).

Further Skills Required:

• Timers (this time for the shields);

• Minimal AI (for the “ship attack”);

• Managing object states.

27 PROJECT IDEAS 566



2D Game Development: From Zero To Hero

27.3 Breakout

Figure 454: Example picture of a breakout-style game

Breakout is a well-known brick-breaker style of game, where the player drives a paddle trying to keep a ball from

getting to the bottom of the screen, while breaking all the blocks on the screen.

27.3.1 Basic Level

The basic level is just making the basic game: make a single level that works. If the player loses their ball, they lose,

if they manage to clear the screen they win.

The paddle should be moved with mouse or keyboard (you can choose to implement either or both) with sufficient

speed to avoid useless deaths but slow enough to be usable. The ball should bounce like it bounces on a wall:

keeping the angle with the wall without changing it.

Skills Required:

• Drawing to a screen;

• Vectors;

• Moving elements of the game;

• Event handling;

• Winning/Lose Conditions;

• Mouse/Keyboard Controls;

• Collision detection and reaction;

• Object management (creation and deletion);

• Score keeping.

27.3.2 Advanced Level

In the advanced level you should implement a basic life system: each time the ball crosses the lower side of the

screen, you lose a life; when all lives are lost, you lose the game.

27 PROJECT IDEAS 567



2D Game Development: From Zero To Hero

To make the game a bit more interesting, it could be an idea to implement different block types:

• Explosive Blocks: When destroyed, these blocks explode, destroying the surrounding blocks;

• Multiple-hit Blocks: They simply require more than one hit to destroy;

• Score Blocks: When destroyed, these blocks drop score items that slowly descend toward the bottom of the

screen. If you catch these items with the paddle, you get extra points.

Furthermore, the ball should progressively get faster with gameplay, you can either do it every few bounces or just

every bounce with the paddle. The choice is yours.

Further Skills Required:

• Managing Object’s states;

• Subclassing;

• Managing Game State.

27.3.3 Master Level

With the “master level” we are going to complete this game by adding powerups: they work in a similar way to the

advanced level’s score blocks with a descending item that grants a certain status to either the ball or the paddle.

You can make it a random chance for each block destruction or make a dedicated block. Here are some suggestions

for some powerups:

• Larger/Smaller paddle;

• Paddle that shoots to destroy blocks;

• Faster/Slower ball;

• Ball that goes through blocks, destroying them;

• “Sticky Paddle” that allows to stop and then release the ball;

• Multiball.

Furthermore, you can implement a sort of “biased bouncing” for the paddle: the further left or right on the paddle

the ball touches, the more it will take a horizontal bias towards that direction.

This way the center of the paddle is “neutral”, keeping the normal bouncing mechanics, while the leftmost and

rightmost sides allow the player to direct the ball the way they want.

27 PROJECT IDEAS 568



2D Game Development: From Zero To Hero

Normal
Bouncing

Force
Bounce
45° left

Force
Bounce

45° right

Figure 455: Biased Bouncing for breakout

27.4 Shooter Arena

Figure 456: Possible Shooter Arena Game

This is a simple keyboard and mouse-controlled arena shooting game (technically the genre is called “twin-stick

shooter”), much in the style of “Crimsonland” and “R.I.P.”: the objective of the game is surviving for as long as

possible.

27.4.1 Basic Level

This level entails making the basic game: being a horde-based game, the AI can be really basic, following your

movements and trying to touch you.

A single type of monsters will spawn from outside the screen and slowly make its way towards you, while the playable

character will shoot bullets towards the mouse cursor.

If a bullet hits an enemy it will die and your score will be incremented, if an enemy hits you you will die.

27 PROJECT IDEAS 569



2D Game Development: From Zero To Hero

Skills required:

• Drawing to a screen;

• Vectors;

• Basic AI;

• Collision detection and reaction;

• Projectiles;

• Lose Conditions;

• Mouse/Keyboard Controls;

• Spawning entities;

• Score Keeping.

27.4.2 Advanced level

In the advanced level you should implement a life system for our playable character, so instead of dying our player

will get hurt and will have its life reduced. A health bar should be shown on screen.

The same should be done for each enemy, so you will need to be able to manage the state of each object (enemy)

separately. Extra points if you show a small health bar on top of a hit enemy, showing its current health.

You should also implement a way to easily code in new enemy types, this will require refactoring your code to support

importing entities from data. Each enemy should at least have different speeds and health.

On each death, the enemy should have a random chance of dropping e medkit that will heal you when touched,

such item should stay on screen for a limited amount of time, then disappear if not used.

Further Skills Required:

• Drawing an HUD;

• Managing an object’s state;

• Coding entities as data;

• Random number generation;

• Timers.

27.4.3 Master Level

In the most difficult level, you should start coding powerups, like new weapon types, temporarily increased walk-

ing speed, higher damage projectiles, etc… Similarly to medkits, these powerups should disappear after a certain

amount of time.

An interesting weapon to implement would be a “railgun”, with bullets that can go through enemies, this will be

easier when you use ray casting (and some tricks for drawing), if you didn’t use it already.

You should also animate the characters, thus getting used to your favourite engine’s animator nodes/classes: this

will make the game feel more complete.

27 PROJECT IDEAS 570



2D Game Development: From Zero To Hero

On each death, the enemy should leave a blood (or if you prefer, goo) splatter that will disappear after a few seconds:

this will make the game more messy and in its own way fun.

Further Skills Required:

• Animators;

• Ray Casting.

27 PROJECT IDEAS 571



2D Game Development: From Zero To Hero

28 Game Jams

You miss 100% of the shots you don’t take.

Wayne Gretzky

Game jams are a great opportunity to test your game making skills in a tight situation, where time is at a premium

and you need to “hack your way” through a fully-fledged prototype of a video game.

In this section there will be some suggestions on how to survive a game jam.

28.1 Have Fun

The biggest prize you can get from a Game Jam is experience and comparing yourself to other participants construc-

tively. You shouldn’t take part to a game jam just for the prize (although aiming for it could make you strive to do

better).

If you don’t have fun, then it’s probably not worth it.

28.2 Stay Healthy

Don’t forget to eat, take regular breaks, go to bed early and just keep some healthy working habits when you’re

participating a Game Jam.

If you don’t keep a healthy work style, your productivity is going to take a dive: you’ll find yourself having trouble

solving the simplest problems, your creativity will be nonexistent and you’ll get extremely frustrated.

28.3 Stick to what you know

A Game Jam event is not a good place where you learn a new language or game engine, you barely have time to

make a game, let alone learn a completely new language and even a new engine!

If you find yourself having to choose between the newest game engine and something you already used two or three

times: go with what you know.

28.4 Hacking is better than planning (But still plan ahead!)

During Game Jams time is at a premium: you shouldn’t use complex data structures or be concerned too much about

“best practices”.

Sometimes “a hack” is better than “a solution”: you’re building what is essentially a prototype, if the game works

and is playable, you have already reached your objective.

You should still plan ahead for your Game Jam experience:

• Make sure your PC is well set up;

• Make sure your development environment works correctly;

• Ensure you can compile some test programs correctly;

28 GAME JAMS 572



2D Game Development: From Zero To Hero

• Have a good IDE[g] ready;

• Plan your meals well, the less time you cook, the more time you can rest and think;

• Have a generic roadmap that tells you how much time you want to dedicate to each phase;

• Have some ready-to-use resources to use as placeholders;

• If the game jam allows it, have a basic game structure ready (Like a title screen with a “Play” button).

28.5 Graphics? Sounds? Music? FOCUS!

When it comes to Game Jams you can’t afford to waste much time on graphics or sounds: having a library of ready-

to-use resources can prove vital, as well as a good way to test game mechanics while someone else is drawing (if

you’re participating as a group).

Sometimes it could be better having no graphics at all, to an extent (just see the game: “Thomas was alone”, where

graphics are rectangles), as long as it doesn’t stop the game from being enjoyable. This is even more important for

more “extreme” Game Jams, like the “0 Hour Game Jam” (where you make a game in the hour that is affected by

the DST time change, usually from 2am to 2am DST).

Be essential, if you want to make a fully-fledged RPG with procedurally generated weapons, a Game Jam is not the

right place to create it.

Again, time is at a premium, cut everything that can be cut:

• Menus can be replaced with a simple title screen, no options;

• Don’t have a dedicated credits screen if the creator names fit in the title screen;

• Keep the HUD minimal or just remove it entirely;

Focus on one or a small bunch of game mechanics and do them well, if you try to do a lot of stuff nothing will come

out good enough to make an enjoyable game.

28.6 Find creativity in limitations

With experience, you’ll find out that it’s much harder to find inspiration when you have full freedom on a project.

Some Game Jams define a “subject” the games have to stick to, this is a nice way to boost creativity: through

limitations. Usually these subjects are conveyed through a single word or by expressing a game mechanic.

An example of “game mechanic” could be the following: “2 button controls” (Which, by the way, was one of the

themes of Ludum Dare 34).

A “theme” or “subject” could be “gravity”, which could mean any of the following:

• Newton’s Gravity

• Solemness, seriousness

• Weight/Pressure (Usually emotional)

Another one could be “growth” (Ludum Dare 34’s other Theme) as in:

28 GAME JAMS 573



2D Game Development: From Zero To Hero

• Planting and growing plants

• Personal Growth (getting experience in life)

• Eating, Surviving and Growing to adult

Many times you’ll find a hidden meaning behind a theme that could give you something really unique and eventually

an edge over the other participants in the Game Jam.

28.7 Involve Your Friends!

A Game Jam doesn’t have to be a quest for “lone wolves”, you can involve your friends in the experience, even if

they’re not coders or game developers: talk about your ideas, get new points of view, suggestions and help.

Game Jams can be a really strong bonding experience for friends and colleagues.

28.8 Write a Post-Mortem (and read some too!)

One of the most useful things you can do after a Game Jam, both for yourself and others, is writing a so-called

“Post-Mortem” of your game, where you state your experience with the Game Jam itself, what went right, what went

wrong and what you would do differently in a following event.

A Post-Mortem is a reflection on what happened and how to make yourself and your work better while leaving a

document that allows other people to learn from your mistakes and learn from a “more experienced you”.

Obviously a smart move would be reading a bunch of Post-Mortems yourself, so to learn more about Game Jams and

avoid some common pitfalls of such an experience.

An interesting take on Post-Mortems could be making a time-lapse video of your work, there are applications ready to

use that will take screenshots at regular intervals of your desktop and your webcam (with a nice picture-in-picture) if

enabled. At the end of everything, the programwill take care of composing a time-lapse video for you. It’s interesting

to see a weekend go fast forward and say “oh, I remember that”.

28.9 Most common pitfalls in Game Jams

To conclude this section, we’ll see some of the most common problems in game jams:

• Bite more than you can chew: Aiming too high and being victims of “feature creep” is a real problem,

the only solution is staying focused and keep everything as simple as possible and be really choosy on the

features to add to the game: take time to refine what you have, instead of adding features;

• Limitations related to tools: If your tools have issues importing a certain asset or you are not able to create

your art for the game then you’re in real trouble. You can’t afford to waste time troubleshooting something

that is not even related to your game. You need to be prepared when the jam starts, test your tools and gather

a toolbox you can rely on, something that will guarantee you stability and productivity.

• Packaging: This is a hard one - sometimes the people who want to try your game won’t be able to play it,

either because of installer issues or missing DDLs. Make sure to package your game with everything needed

28 GAME JAMS 574



2D Game Development: From Zero To Hero

and eventually to link to the possible missing components (like the Visual C++ Redist from Microsoft). The

easier it is for the evaluators to try your game, the better.

• Running out of time or motivation: plan well and be optimistic, you can do it!

28 GAME JAMS 575



2D Game Development: From Zero To Hero

29 Where To Go From Here

Be grateful for all the obstacles in your life. They have strengthened you as

you continue with your journey.

Anonymous

It has been a very long trip, hopefully this book has satisfied great part of your curiosity about 2D Game Development

and Design, but the adventure is far from over. There are infinite resources on- and off-line to further your experience

in game development and design.

This book has been mainly about getting you to touch the nitty-gritty of game development, giving you the tools to

be able to create your game without overly relying on your toolkit (be it Unity, UDK or any other fully-fledged game

engine), or even be able to modify, at a low level, the behaviour of the tools given to you to reach your objective.

There are still countless questions remaining, which we can condense in one big question:

“Where do I go from here?”

You can try and take on a game jam, Itch hosts a myriad of game jams at https://itch.io/jams and many of them are

beginner friendly, then there is the famous “Ludum Dare” game jam that you can find at https://ldjam.com/.

If you want to know more about the game development process and how it works, Here are some resources you can

check out to become a better game developer and designer. Everything is divided by category for convenience.

But first, here’s a small legend to distinguish paid products from free products.

• Free Product: [F]

• Accepts donations or Partially Free: [D]

• Paid Product: [P]

29.1 Collections of different topics

29.1.1 Books

• Apress-Open Ebooks: https://www.apress.com/it/apress-open/apressopen-titles [F]

• “OpenBook” offers from O’Reilly: https://www.oreilly.com/openbook/ [F]

29.1.2 Videos

• freeCodeCamp.org’s YT: https://www.youtube.com/channel/UC8butISFwT-Wl7EV0hUK0BQ [F]

• 3DBuzz (Archived on the Internet Archive): https://archive.org/details/3dbuzz-archive [F]

29.1.3 Multiple formats

• Daily “Free Learning” offer from PacktPub: https://www.packtpub.com/free-learning [F]

• “Awesome lists”: https://github.com/sindresorhus/awesome [F]

• Game Dev Nexus: https://gamedevnexus.com/ [F]

29 WHERE TO GO FROM HERE 576

https://itch.io/jams
https://ldjam.com/
https://www.apress.com/it/apress-open/apressopen-titles
https://www.oreilly.com/openbook/
https://www.youtube.com/channel/UC8butISFwT-Wl7EV0hUK0BQ
https://archive.org/details/3dbuzz-archive
https://www.packtpub.com/free-learning
https://github.com/sindresorhus/awesome
https://gamedevnexus.com/


2D Game Development: From Zero To Hero

29.2 Pixel Art

29.2.1 Multiple Formats

• Pedro Medeiros’s Patreon Page: https://www.patreon.com/saint11/ [D]

29.3 Sound Design

29.3.1 Multiple Formats

• EpicSound’s Sound Effects Tutorials: https://www.epicsound.com/sfx/ [F]

29.4 Game Design

29.4.1 Books

• 100 Game Design Tips and Tricks (Wlad Marhulets) https://archive.org/details/100-design-tips-and-tricks/

[F]

• A theory of fun for game design (Raph Koster) [P]

• The Art of Game Design: A Book of Lenses (Jesse Schell) [P]

29.5 Game Development

29.5.1 Web Resources

• Amit’s Game Programming Information: http://www-cs-students.stanford.edu/~amitp/gameprog.html

[F]

29.5.2 Videos

• OneLoneCoder’s YT: https://www.youtube.com/channel/UC-yuWVUplUJZvieEligKBkA [F]

29.6 References and Cheat Sheets

• Easing functions Cheat Sheet: https://easings.net/ [F]

29 WHERE TO GO FROM HERE 577

https://www.patreon.com/saint11/
https://www.epicsound.com/sfx/
https://archive.org/details/100-design-tips-and-tricks/
http://www-cs-students.stanford.edu/~amitp/gameprog.html
https://www.youtube.com/channel/UC-yuWVUplUJZvieEligKBkA
https://easings.net/


Appendices



2D Game Development: From Zero To Hero

A Glossary

A

A.L.U. Short for “Arithmetic Logic Unit”, it’s a component in modern CPUs that does arithmetic and bitwise

operations[g] on integer binary numbers.

API Short for “Application Programming Interface”, it’s a set of definitions, tools and clearly defined methods of

communication between various software components.

B

Bitwise Operation Bitwise operations are operations that operate on individual bits. For instance, if bitwise oper-

ations are done between bytes, a bitwise operation will still operate bit by bit. (Example: 01001100 AND 10001100

= 00001100)

C

Call by reference Evaluation strategy where a function parameters are bound to a function by passing a reference

to the arguments, this could cause side effects[g] since the function would be able to change variables outside

its local scope.

Call by value Evaluation strategy where a function parameters are bound to a function by making a copy of the

values used as an argument.

D

Dangling Pointer A dangling pointer is a memory pointer that references an area of memory that doesn’t contain

a valid object. A dangling pointer usually happens when an object is deleted from memory forcibly, but the

pointers referencing said object are not invalidated (usually by setting such pointers to a null value).

Dynamic Execution See out of order execution

E

EULA Short of “End User License Agreement”, is essentially a contract that establishes the purchaser’s right to use

the software, usually with some limitations on how the copy can be used.

F

FOV Short of “Field of View”, it denotes what can be visible by something, it is measured in degrees. Common used

values are 90 (in the style of the original DOOM), but it can go up to 120 (standard binocular vision). Higher

values may make the environment look distorted.

G

Greedy Algorithms Class of algorithms that try to solve a problem by making the locally optimal choice at each

stage, approximating the global solution, without any global planning.

A GLOSSARY 579



2D Game Development: From Zero To Hero

H

Hash Function A hash function is a special function that is used to map data of arbitrary size to fixed-size values.

This function has some features like being able to spread values in an uniform way (minimizing the different

values that have the same hash, called “hash collisions”), is fast and deterministic (given the same input will

generate the same hash).

HUD Short of “Heads Up Display”, in games it usually shows your health, ammunition, minimap and other informa-

tion.

I

IDE Short for “Integrated Development Environment”, it is a program that integrates a text editor with syntax

highlighting, a compiler, a code checker, a project explorer and other features (like a tag explorer, for instance).

Information Hiding Information hiding is one of the basic principles of programming: each part of a program (a

“module”) should not expose its inner workings, but rather expose a stable “interface” to the outside world.

This will help separating modules from each other and avoid “snowball effects” when modifying the inner

workings of one of them.

K

Kanboard Short for “Kanban Board”, are boards used to manage work. The board is usually divided into swimlanes

and “cards” that represent the work to do are moved from left to right, to represent the progress of the work

itself.

L

Letter Notation Also known as “letter music notation”, it’s a music notation system that uses letters A through G

to write music.

M

Malware Short for “malicious software”, it’s a “catchall term” for viruses, trojan horses and any kind of software that

is programmed to behave maliciously. Such software can steal information (passwords, key presses, habits,

etc…) or flat out try to make your computer unusable (deleting system files, encrypting your documents and

asking for a ransom, etc…)

Memory Leak A memory leak is usually the result of a programming error, where the memory is not correctly

managed. This usually entails allocating and using memory without releasing it, thus the program will eat

more and more memory as it keeps running.

Modern music notation The most common way to write music, using symbols to indicate the duration and type

of note, while the symbol’s positioning in a 5-line staff defines its pitch.

A GLOSSARY 580



2D Game Development: From Zero To Hero

O

Oscillator An oscillator is a device (usually hardware) used to create an alternating current. Oscillators can be used

in audio synthesis to create pitches.

Out of order execution Paradigm used in high performance CPUs to reduce the wasted instruction cycles. The

instructions are performed in an order given by the availability of the input data and execution units instead

than the original order defined by the programmer.

P

Pre-emption See preemptive multitasking

Preemptive multitasking A multitasking environment where the operating system forcibly initiates context

switches (saves the state and interrupts temporarily) between running processes, regardless whether their

job is finished or not.

Process Starvation See starvation

R

Race Condition A condition where two or more threads are competing for a resource (variable, screen buffer, …)

and the order that the threads happen to take hold of such resource changes the result.

REPL Short for “Read-Eval-Print Loop”, sometimes called “language shell”. It’s a simple computer program that

presents a prompt where the user can write code in real time, line by line, and see each piece being executed

immediately.

Rootkit Usually associated with malware, a rootkit is a software that manages to get access to reserved areas of

an operating system, usually to hide its own, or other softwares’ presence.

S

Side Effect In computer science a function is said to have a “side effect” when it changes variables outside its local

environment, this can happen in languages which use call by reference[g] evaluation strategies.

Single Point of Failure This usually defines a part of a system that, if it fails, will stop the entire system from

working. This is often used to indicate objects that have too many responsibilities.

Soft Locking This is usually referred as an anomalous situation where a game is not “frozen” and still working

correctly, but the player is unable to continue playing. An example of soft-locking would be the player getting

trapped inside level geometry, unable to move: the game is not frozen (the level can be restarted), but the

player cannot finish the level.

Stack Overflow A stack overflow is a situation where too much data is pushed into a data structure called a “stack”.

One of the most common cases of “stack overflow” happens during recursion: when a function is called all

the current work variables are saved and pushed into a stack data structure in memory, along with a “return

address” that will allow us to come back to this point of the program. When a recursion is too deep (the

recursive function calls itself too many times), the call stack gets filled up and it’s not able to continue the

execution, leading to an aborted operation.

A GLOSSARY 581



2D Game Development: From Zero To Hero

Starvation Also known as “process starvation”, it’s a phenomenon where a certain process (or group of processes)

has a lower priority than others, and is not able to access resources (like the CPU) because it’s always “over-

taken” by higher priority tasks. This leads to the process itself never being executed. When this happens, a

process is labeled as “in starvation”.

Static Typing Languages characterized by static typing are the ones where the type of a certain variable (integer,

string, class, …) is known at compile time.

U

UI Short of User Interface, defines the elements shown to and interacted by the user in a software or, in this case,

a video game menu.

Unreachable Memory This is a phenomenon where some dynamically allocated memory has no more references

pointing to it. This is a common cause of memory leaks in programming languages without automatic garbage

collection (like C and C++).

W

Wiki A wiki usually refers to a knowledge base website where users collaboratively modify content and structure

by using their own web browsers.

A GLOSSARY 582



2D Game Development: From Zero To Hero

B Engines, Libraries And Frameworks

Here follows a list of game engines, libraries and frameworks, so you can make an informed choice about your

platform, or just try one!

For each proposed engine or framework, along with a short description, you will find the following sections:

• Website: This contains a link to the official website of the engine/framework/library;

• License: Here you will see if the product is free to use or if you need to pay a price for it, and anything in

between;

• Bindings: In this table you will find if the product supports one of the many famous programming languages

available, as well as the following:

– Dedicated Language: This engine/framework makes use of its own scripting language, usually easier

to learn than general-purpose languages. You may need to learn it;

– Visual Programming: This product makes use of a “Visual Scripting” (codeless) paradigm, where you

can program your own game without writing code, usually by using directed graphs and nodes.

• Platform compatibility: This will tell you if the product is good for your objective, by telling you which

platforms you can deploy on, like Linux, Windows or even on the web via HTML5;

General Purpose

General purpose engines are the basic frameworks that allow you to build any game you want, without being tied

to a specific genre. These are the tools that give you the most freedom, but also will be a bit harder to master.

Axys

Website: https://github.com/axys1/axys

License: Open Source

Axys aims to be a radical fork and refactoring of the Cocos2d-x engine, after the producer decided to work on its

newest product. It aims to support OpenAL on all platforms and use more modern C++ features.

Bindings: C++, Lua.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

Cocos2d-x/Cocos Creator

Website: https://www.cocos.com/

License: Mixed: The code is Open Source, but has many different licenses

B ENGINES, LIBRARIES AND FRAMEWORKS 583

https://github.com/axys1/axys
https://www.cocos.com/


2D Game Development: From Zero To Hero

Cocos is a set of tools and engines that allow to code your games. It supports both 2D and 3D games and it provides

all the basic functions needed to create your own game, like rendering, audio, physics and user input.

The producer is now working on the new iteration: Cocos Creator, but Cocos2d-x is still available and considered a

very mature project. If you fear it is going to be abandoned, you may want to check Axys

Bindings: C++, Lua, Javascript.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

ENIGMA

Website: https://enigma-dev.org/docs/Wiki/ENIGMA

License: Open Source

ENIGMA (Extensible Non-Interpreted GameMaker Augmentation) is an environment that is derived fromGameMaker,

but with time has taken a different approach than its counterpart: it compiles its own language (EDL) to C++ and it

also allows to tie into C++’s templates and functions.

ENIGMA’s license is GPL3, with a special exemption that allows you to sell the products made with the software.

Bindings: C++, Dedicated Language (EDL), Visual Programming

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

Game Maker Studio

Website: https://www.yoyogames.com/gamemaker

License: Paid

Game Maker Studio is one of the simplest game-making toolkits available on the market, but that doesn’t mean it’s

not powerful. In fact, one of the most famous games of recent history was made with it: Undertale.

It makes use of its own scripting language, and some visual toolkits as well.

Game Maker Studio is commercial software, regulated by its own EULA, but it was added here for sake of complete-

ness.

Bindings: Dedicated Language (GML), Visual Programming.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

B ENGINES, LIBRARIES AND FRAMEWORKS 584

https://enigma-dev.org/docs/Wiki/ENIGMA
https://www.yoyogames.com/gamemaker


2D Game Development: From Zero To Hero

GDevelop

Website: https://gdevelop-app.com/

License: Open Source

GDevelop is an open-source toolkit to make games, mostly based on visual programming, GDevelop supports the

use of JavaScript to code parts of the game, as well as JSON and support for HTTP Requests. GDevelop also supports

exporting to Android and Facebook Instant Games, as well as exporting to iOS and web-based platforms.

GDevelop is distributed under the MIT license (although the name and logo are copyright), although the main li-

cense file refers to other license files inside each folder. So you may want to check the GitHub repository for more

information.

Bindings: JavaScript, Visual Programming.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

GLFW

Website: https://www.glfw.org/

License: Open Source

GLFW is an Open-Source library for OpenGL, OpenGL ES and Vulkan, that allows to create windows, context and

surfaces, as well as receiving input and events. It is written in C.

GLFW is distributed under the ZLib/png license, which allows for both commercial and personal use, both in propri-

etary and open-source situations.

Bindings: C++, C, C#, Go, Java, Python, Ruby, Lua, Rust.

Platform Compatibility: Windows, Linux, Mac OS.

Godot

Website: https://godotengine.org/

License: Open Source

Godot is a fully-fledged engine that makes use of a node-based approach and supports many ways of programming

your own game, both in 2D and 3D, including its own language (GDScript) and visual scripting.

Godot is currently distributed under the MIT license, you should check the Legal section of the Godot Documentation

for all the additional licenses that you may need to know about.

B ENGINES, LIBRARIES AND FRAMEWORKS 585

https://gdevelop-app.com/
https://www.glfw.org/
https://godotengine.org/


2D Game Development: From Zero To Hero

Bindings: C++, C#, Dedicated Language (GDScript), Visual Programming.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

Gosu

Website: https://www.libgosu.org/

License: Open Source

Gosu is a 2D game development library that focuses on short game development competitions (game jams) and

prototyping. It is lightweight and have few dependencies.

The library is distributed under the MIT license, which is a very permissive one.

Bindings: Ruby, C++.

Platform Compatibility: Windows, Linux, Mac OS, iOS.

Löve

Website: http://love2d.org/

License: Open Source

Löve is a lua-based framework for creating games, features an extensive documentation and features some levels

of abstraction that help with game development.

Löve is distributed under the ZLib/png license, which allows for both commercial and personal use, both in proprietary

and open-source situations.

Bindings: Lua.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android.

MonoGame

Website: http://www.monogame.net/

License: Open Source

MonoGame is an open-source porting of XNA 4, it allows for people used to Microsoft’s XNA framework to port their

games to other platforms, as well as creating new games from scratch. Many games make use of this framework,

one above all: Stardew Valley.

B ENGINES, LIBRARIES AND FRAMEWORKS 586

https://www.libgosu.org/
http://love2d.org/
http://www.monogame.net/


2D Game Development: From Zero To Hero

MonoGame is distributed under a mixed license: Microsoft Public License + MIT License. You may want to check the

license yourself on the project’s GitHub page.

Bindings: C#.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

olcPixelGameEngine

Website: https://github.com/OneLoneCoder/olcPixelGameEngine

License : Open Source

A small framework for pixel drawing and user interface framework coded by javidx9 (also known as OneLoneCoder),

it is made up of a single header file, making it extremely lightweight but also rich in features.

Bindings: C++, C, C#, Java, Lua, Rust.

Platform Compatibility: Windows, Linux, Mac OS.

SDL

Website: https://www.libsdl.org/

License: Open Source

SDL (Simple DirectMedia Layer) is one of the most famous libraries around to make multimedia applications as well

as video games.

SDL is distributed under the ZLib license, which allows for both commercial and personal use, both in proprietary

and open-source situations. Many of the languages listed as “usable” are compatible via extensions.

The versions of SDL up to version 1.2 are instead distributed under the GNU LGPL license, which is more complex

and may need to be analyzed by legal experts.

Bindings: C++, C, C#, Go, Python, Lua, Rust.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

SFML

Website: https://www.sfml-dev.org/

License: Open Source

B ENGINES, LIBRARIES AND FRAMEWORKS 587

https://github.com/OneLoneCoder/olcPixelGameEngine
https://www.libsdl.org/
https://www.sfml-dev.org/


2D Game Development: From Zero To Hero

SFML (Simple Fast Multimedia Library) is a library dedicated to creation of multimedia applications (not limited to

video games), providing a simple interface to the system’s components.

SFML is distributed under the ZLib/png license, which allows for both commercial and personal use, both in propri-

etary and open-source situations.

Bindings: C++, C, C#, Go, Java, Python, Ruby, Rust.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android.

*: Currently in development

Genre-Specific

Sometimes you don’t need all the tools available to make your own game, sometimes you want your adventure to fit

some pretty common standards and not deviate too much from them. Genre-specific engines allow you to ditch both

the complexity and freedom of the general-purpose engines to have an easier time making your own adventure.

These engines allow you to focus more on the content of your game, instead of wasting time crunching code.

EasyRPG

Website: https://easyrpg.org/

License: Open Source

EasyRPG is a development environment focused on creating RPG games, trying to maintain compatibility with the

older RPG Maker 2000/2003 software.

Bindings: Dedicated Language, Visual Programming.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

O.H.R.RPG.C.E.

Website: http://rpg.hamsterrepublic.com/ohrrpgce/About

License: Open Source

The “Official Hamster Republic Role Playing Game Construction Engine” is an utility that allows you to create RPGs

in the style of Final Fantasy on the NES/SNES/GBA. It focuses primarily on visual programming, but it also features a

custom scripting language for more advanced usage.

Bindings: Dedicated Language, Visual Programming.

B ENGINES, LIBRARIES AND FRAMEWORKS 588

https://easyrpg.org/
http://rpg.hamsterrepublic.com/ohrrpgce/About


2D Game Development: From Zero To Hero

Platform Compatibility: Windows, Linux, Mac OS, Android.

OpenBOR

Website: https://github.com/DCurrent/openbor

License: Open Source

OpenBOR is an open source implementation of a side-scroller engine (mostly famous for beat-em-ups in the style of

Streets of Rage or Final Fight). It has an active community, even if releases are infrequent.

Bindings: C

Platform Compatibility: Windows, Linux, Android.

Ren’Py

Website: https://www.renpy.org/

License: Open Source

Ren’Py is an engine that allows you to build visual novels and life simulation games. It features its own dedicated

scripting language as well as Python for more advanced usage.

This engine is used to create over 4000 visual novels, games and other works.

Bindings: Dedicated Language, Python.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

RPG Maker

Website: https://www.rpgmakerweb.com/

License: Paid

RPGMaker is probably themost well-known engine for building top-down RPG games that usually feature story-heavy

elements.

Bindings: Ruby (from RPG Maker XP to RPG Maker Vx Ace), JavaScript (From RPG Maker MV onward), Dedicated

Language, Visual Programming.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

B ENGINES, LIBRARIES AND FRAMEWORKS 589

https://github.com/DCurrent/openbor
https://www.renpy.org/
https://www.rpgmakerweb.com/


2D Game Development: From Zero To Hero

RPG Paper Maker

Website: http://rpg-paper-maker.com/

License: Open Source. Free for non-commercial projects, requires a one-time fee for commercial use.

RPG Paper Maker is an engine that allows you to create 3D RPG games with 2D sprites, in the style of the famous

“Paper Mario” series.

It allows for creation of jRPGs, action RPGs and Tactical RPGs alike, as well as other kinds, it supports visual program-

ming and makes use of JavaScript for more advanced features.

Bindings: Visual Programming, JavaScript.

Platform Compatibility: Windows, Linux, Mac OS, and Web.

Stratagus

Website: https://github.com/Wargus/stratagus

License: Open Source

Stratagus is an open source real-time strategy engine, it’s the engine behind the Wargus mod for Warcraft II. It makes

use of the Lua language for scripting.

Bindings: Lua.

Platform Compatibility: Windows, Linux, Mac OS.

3D Engines

Sometimes you may want to go premium, and make use of a 3D engine for your 2D game (“Castlevania: Symphony

of the Night” made use of some 3D capabilities of the PlayStation, for instance). Be it either to have 3D backgrounds,

make a 2.5D game or particle effects, you can use a 3D engine to make 2D games without any issue.

IRRlicht

Website: http://irrlicht.sourceforge.net/

License: Open Source

IRRlicht is a 3D engine (as in does only 3D rendering) made in C++ that aims to be high-performance.

B ENGINES, LIBRARIES AND FRAMEWORKS 590

http://rpg-paper-maker.com/
https://github.com/Wargus/stratagus
http://irrlicht.sourceforge.net/


2D Game Development: From Zero To Hero

IRRlicht distributed under the ZLib/png license, which allows for both commercial and personal use, both in propri-

etary and open-source situations.

Bindings: C++, C#, Java, Python, Ruby.

Platform Compatibility: Windows, Linux, Mac OS.

Ogre3D

Website: https://www.ogre3d.org/

License: Open Source

Ogre3D is an open source 3D graphics engine (it’s used to render 3D graphics only).

Ogre3D comes in 2 versions: version 1.x is distributed under the GNU LGPL license, while the more recent 2.x version

is distributed under the more permissive MIT license.

Bindings: C++, C#, Java, Python, Ruby.

Platform Compatibility: Windows, Linux, Mac OS.

Panda3D

Website: https://www.panda3d.org/

License: Open Source

Panda3D is a complete and open source 3D game engine.

Panda3D itself is distributed under the modified BSD license, which is very permissive, but it brings together many

third-party libraries that are released under different licenses. It is suggested to check the license section of the

manual for more information.

Bindings: C++, Python.

Platform Compatibility: Windows, Linux, Mac OS.

Unity 3D

Website: https://unity.com/

License: Free for Personal Use + Paid Version for commercial projects

B ENGINES, LIBRARIES AND FRAMEWORKS 591

https://www.ogre3d.org/
https://www.panda3d.org/
https://unity.com/


2D Game Development: From Zero To Hero

Unity is probably among the most famous 3D engines used to create video games, as well as other projects that

make use of its 3D capabilities (like VR/AR-based projects). It uses the C# programming language.

Unity is a proprietary engine, distributed under a proprietary license, with a Free edition available.

Relevant Bindings: C#.

Platform Compatibility: Windows, Linux, Mac OS, iOS, Android and Web.

UPBGE

Website: https://upbge.org/

License: Open Source

Since 2018, Blender doesn’t ship with its own game engine anymore. UPBGE is a project to bring back such feature,

built on top of the newer Blender versions, and then some.

Bindings: Python, Dedicated Language, Visual Programming.

Platform Compatibility: Windows, Linux, Mac OS.

B ENGINES, LIBRARIES AND FRAMEWORKS 592

https://upbge.org/


2D Game Development: From Zero To Hero

C Some other useful tools

Graphics

Aseprite

Aseprite is an open-source and commercial tool for creating pixel-art graphics. At the time of writing, it can be either

bought or compiled from source code, but cannot be redistributed according to its EULA[g].

https://www.aseprite.org/

Blender

Blender is an open-source surface modeling program, used in the movie industry and in many other 3D projects, it

allows you to create your models and worlds for free.

https://www.blender.org/

Gimp

Gimp is an extensible drawing and photo-manipulation tool, it can be used to draw, edit, filter, balance or compress

your graphic resources.

https://www.gimp.org/

Inkscape

Inkscape is an open-source software to work with vector graphics, if you want to give a really clean look to your

graphics, you should probably take a look at this software.

https://inkscape.org/

Krita

Krita is a drawing program principally aimed towards artists, with all kinds of brushes and tools it’s a real treat to

any graphical artist and whoever wants to give a “painted feeling” to their game.

https://krita.org/en/

Laighter

This is a great “name your own price” tool that allows you to create normal maps for 2D textures, to give your game

a more “professional” feeling.

https://azagaya.itch.io/laigter

LibreSprite

LibreSprite was created as a fork of Aseprite, but it keeps the previous GNU GPL 2 license.

C SOME OTHER USEFUL TOOLS 593

https://www.aseprite.org/
https://www.blender.org/
https://www.gimp.org/
https://inkscape.org/
https://krita.org/en/
https://azagaya.itch.io/laigter


2D Game Development: From Zero To Hero

https://libresprite.github.io/

NormalMap-Online

This is a very nice tool that allows you to create normal maps automatically, for free. Good for a quick game jam or

for starters.

https://cpetry.github.io/NormalMap-Online/

Piskel

Piskel is an open-source web-based tool for creating pixel-art graphics and animations. On the website there is a

downloadable version too, but usually the web-based one is a bit more performing.

https://www.piskelapp.com/

Pixelorama

Pixelorama is a really interesting beast, since it is made using the Godot game engine and GDScript, it features tools,

animation timeline, tool options, pattern filling, and many many more interesting features.

https://orama-interactive.itch.io/pixelorama

Shaders

SHADERed

SHADERed is a fully-featured IDE for coding GLSL and HLSL shaders, it supports debugging as well as live preview

of the shader you’re coding. It’s cross-platform and open source.

https://shadered.org/

Sounds and Music

Audacity

Audacity is an open-source tool for audio editing and recording, extensible with plugins. In the hands of an expert,

this seemingly simple program can perform great feats.

This program has been object of controversy due to licensing and telemetry, thus a fork has been made, called

“Tenacity”, which is described below

https://www.audacityteam.org/

Bosca Ceoil

Created by Terry Cavanagh (creator of VVVVVV, Super Hexagon and Dicey Dungeons), this tool is geared towards

beginners, containing chords and scales as well as pre-made instruments. This allows to get something good going

on straight away.

C SOME OTHER USEFUL TOOLS 594

https://libresprite.github.io/
https://cpetry.github.io/NormalMap-Online/
https://www.piskelapp.com/
https://orama-interactive.itch.io/pixelorama
https://shadered.org/
https://www.audacityteam.org/


2D Game Development: From Zero To Hero

This tool is open source, made in Adobe AIR, available for Windows, Linux and Mac

https://terrycavanagh.itch.io/bosca-ceoil

Chiptone

An alternative to SFXR, Chiptone is an online tool (made with HTML5, Haxe and OpenFL) that can be used to create

chiptune-like sounds for your games.

It also features downloadable versions for Windows and Mac OS.

https://sfbgames.itch.io/chiptone/

FamiStudio

FamiStudio is a DAW (Digital Audio Workstation) software that allows you to edit and create tracker files for the

Nintendo Famicom/NES. Its interface is very intuitive and resembles a lot of DAW software you can find.

The software is available for Windows, MacOS and Linux.

https://famistudio.org/

Helio

The Helio project poses itself as “an attempt to rethink a music sequencer to create a tool that feels right”. It strives

for an extremely clean interface, throwing the idea of it being used as a tool to “grow as a composer”.

It is still in its early stages, but what’s there seems really good.

This software is available for Windows, Linux, MacOS, Android and iOS.

https://helio.fm/

JFXR

Another alternative to SFXR, JFXR aims to be a browser-based alternative that is more powerful than the original.

Being completely browser-based, this software should work on all systems, including modern smartphones.

https://github.com/ttencate/jfxr

LMMS

LMMS (Linux Multimedia Studio) is a software used to create digital music, it works in a similar fashion to the com-

mercially available FruityLoops.

https://lmms.io/

C SOME OTHER USEFUL TOOLS 595

https://terrycavanagh.itch.io/bosca-ceoil
https://sfbgames.itch.io/chiptone/
https://famistudio.org/
https://helio.fm/
https://github.com/ttencate/jfxr
https://lmms.io/


2D Game Development: From Zero To Hero

MilkyTracker

MilkyTracker is an editor for tracker files that takes a lot of inspiration from FastTracker II, it has a lot of functionality,

it’s well-documented and the community is active.o

https://milkytracker.titandemo.org/

rFXGen

This is another web-based alternative to SFXR. It aims to be simpler to use, has a less dated interface and lets you

save files that contain the generation parameters, thus extremely lightweight.

This software is available both on browsers and as a downloadable. It’s open source and downloadable from itch.io

in a “name your own price” fashion.

https://raylibtech.itch.io/rfxgen

Rimshot

Rimshot is a simple but effective drum machine that can be used to lay down the rhythm of your next jam. Useful

to help in the creation of background music for your games.

http://stabyourself.net/rimshot/

SFXR/BFXR/CFXR

SFXR (and its other iterations) is a small software that can help you create 8-bit style sound effects for your games,

easily. There are versions for Windows, Mac and even online.

http://www.drpetter.se/project_sfxr.html

Tenacity

Tenacity is a fork of the Audacity audio editor, mostly due to licensing woes and complaints about new telemetry

functionalities and data collection inserted by the company that bought Audacity.

https://tenacityaudio.org/

Wafxr

This is another SFXR-inspired sound generator, but instead of generating static WAV files, it generates audio dynam-

ically via Web Audio. This, coupled with the wasgen library allows you to save the “playback code” of a certain sound

to include it in your games.

https://github.com/fenomas/wafxr

C SOME OTHER USEFUL TOOLS 596

https://milkytracker.titandemo.org/
https://raylibtech.itch.io/rfxgen
http://stabyourself.net/rimshot/
http://www.drpetter.se/project_sfxr.html
https://tenacityaudio.org/
https://github.com/fenomas/wafxr


2D Game Development: From Zero To Hero

Maps

LDtk

LDtk is a level editor focused on user-friendliness, it also has some interesting features like auto-rendering where it

takes care of placing decorations automatically. It has a pay-what-you-want policy, but you can also get it for free

(if you like it, support the creator!).

https://ldtk.io/

Tiled

Tiled is a map editor tool that can be used to draw your maps using a tilemap, supports orthogonal, isometric and

even hexagonal maps.

https://www.mapeditor.org/

Libraries

Open Adaptive Music Library (oaml)

Oaml is a library dedicated to the development of adaptive music in video games, it supports Unity and Godot as of

now. Last development at the time of writing was in 2018, though.

https://oamldev.github.io/

Misc

Chronolapse

Chronolapse is a software specialized in timelapse creation. This can be a really nice addition to a Game Jam’s post-

mortem post, which will show a timelapse of the entire game development process, thus making it more interesting.

https://github.com/collingreen/chronolapse

Open Broadcaster Software (OBS Studio)

While not strictly a coding-related software, OBS is an amazing software for broadcasting your streams, it could be

a good idea to show your progress by programming while streaming.

https://obsproject.com/

C SOME OTHER USEFUL TOOLS 597

https://ldtk.io/
https://www.mapeditor.org/
https://oamldev.github.io/
https://github.com/collingreen/chronolapse
https://obsproject.com/


2D Game Development: From Zero To Hero

D Free assets and resources

In this appendix we’ll take a look at a small list of websites that contain resources to help with the development of

your game, like assets, royalty-free music and the like.

For each website we will have, along with a short description:

• Website: containing a link to the website where you can find the resources listed;

• Resource Types: a small table describing the kind of resources you will find on the website.

The licenses vary fromwebsite to website and even from single resource to another, so you should pay close attention

to what you use and how you use it.

Openclipart.org

Website: https://openclipart.org/

Types of resources available:

Graphics Music Sound Effects

✓

Openclipart is a website that contains lots of freely available cliparts , in vector format, that can be a good starting

point for your own art: buttons, characters, symbols, …

The website is currently (as of December 18th, 2020) undergoing a phase of transition, after switching backend and

what seems to have been an attack by cyber-criminals.

It now features quite a confusing interface but now features a search function, but it’s a precious source of art if you

know what you’re looking for.

Opengameart.org

Website: https://opengameart.org/

Types of resources available:

Graphics Music Sound Effects

✓ ✓ ✓

Opengameart is a website specifically dedicated to game development, with all kinds of resources to use in your

game, either as placeholders or good-quality assets that are meant to stay in your product.

The interface is quite essential and sometimes the website can be slow, but this is a great source for anything you

need to make your own video game.

D FREE ASSETS AND RESOURCES 598

https://openclipart.org/
https://opengameart.org/


2D Game Development: From Zero To Hero

Freesound

Website: https://freesound.org/

Types of resources available:

Graphics Music Sound Effects

✓ ✓

The Freesound project is a collaborative database of sounds licensed under the “Creative Commons” license, it also

features a very interesting blog that will teach you about sounds and soundscapes.

PublicDomainFiles

Website: http://www.publicdomainfiles.com/

Types of resources available:

Graphics Music Sound Effects

✓

Similarly to OpenClipart, PublicDomainFiles contains a ton of graphics that can be a really good starting point for all

your projects. It has a nice search function with filters and a good interface, even though it does not look as modern

as other dedicated websites.

CCMixter

Website: http://ccmixter.org/ and http://dig.ccmixter.org

Types of resources available:

Graphics Music Sound Effects

✓

CCMixer is a gold mine when it comes to music you can use in your games: its interface is simple and easy to

understand, features a tag-based search and the quality is great.

Definitely a website to check when you want to add some beat to your game.

D FREE ASSETS AND RESOURCES 599

https://freesound.org/
http://www.publicdomainfiles.com/
http://ccmixter.org/
http://dig.ccmixter.org


2D Game Development: From Zero To Hero

SoundBible.com

Website: http://soundbible.com

Types of resources available:

Graphics Music Sound Effects

✓

SoundBible.com is another great website where you can look for sound effects for your games: the interface is quick

and all sound effects are listed along with their license, which is definitely a plus.

Incompetech

Website: https://incompetech.com/

Types of resources available:

Graphics Music Sound Effects

✓

One of the most known websites in the field, and sometimes a bit overused, Incompetech contains lots of music for

your game, but you need to check the license yourself. It surely gives a great set of placeholders for your project,

while waiting for a more fitting soundtrack.

D FREE ASSETS AND RESOURCES 600

http://soundbible.com
https://incompetech.com/


2D Game Development: From Zero To Hero

E Contributors

This e-book is the collective work of many game developers, critics and enthusiasts. Here is a list of who contributed

to the making of this work.

• Daniele Penazzo (Penaz) - Project creator, maintainer and main writer

• Luca Violato (Rei) - Marketing section

• Sjofin (Fin) - Art Tips

• Roe61 - Art (https://linktr.ee/Roe61)

Special Thanks to the following people who helped making this work even better:

• Nikita Ivanchenko (Nivanchenko) - For fixing some mistakes

• abreathingcorpse - Proofreading and fixing some math mistakes

E CONTRIBUTORS 601

https://linktr.ee/Roe61


List of Tables

1 Some rules that would help us calculating logarithms . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Some simple derivation rules (k is any constant number and e is Euler’s number) . . . . . . . . . . . 14

3 Some derivation rules for combined functions (a and b are constants) . . . . . . . . . . . . . . . . . 14

4 Conversion between degrees and Radians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Some reflection formulas for trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Some Shift Formulas for Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Some addition and difference identities in trigonometry . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Some double-angle formulae used in trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Counting the possible outcomes of two coin tosses . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Comparison between decimal and binary representations . . . . . . . . . . . . . . . . . . . . . . . 49

11 Comparison between decimal and octal representations . . . . . . . . . . . . . . . . . . . . . . . . 49

12 Comparison between decimal and hexadecimal representations . . . . . . . . . . . . . . . . . . . . 50

23 The first truth table we’ll simplify with Karnaugh Maps . . . . . . . . . . . . . . . . . . . . . . . . . 80

24 Truth table with a “don’t care” value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

27 A simple adjacency list for our reference image . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

28 How to read an adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

29 Performance table for Dynamic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

30 Summary Table for Dynamic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

31 Performance table for Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

32 Summary Table for Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

33 Performance table for Doubly-Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

34 Summary Table for Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

35 Performance table for Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

36 Summary Table for Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

37 Performance table for Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

38 Summary Table for Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

39 Performance table for Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

40 Summary Table for Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

42 Summary of linear gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

48 An example of exponential level curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

49 An example of “level-based” experience rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

52 Summary table for the Singleton Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353

53 Summary table for the Dependency Injection Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .355

54 Summary table for the Prototype design pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

55 Summary table for the Flyweight Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357

56 Summary table for the Component/Composite design pattern . . . . . . . . . . . . . . . . . . . . .359

57 Summary table for the Decorator design pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . .360

58 Summary table for the Adapter design pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360

I



59 Summary table for the Facade design pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

61 Summary table for the Command Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

62 Summary table for the Observer Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367

63 Summary table for the Strategy Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369

64 Summary table for the Chain of Responsibility Pattern . . . . . . . . . . . . . . . . . . . . . . . . .370

List of Figures

1 Example of a Cartesian plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Image of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Graphical representation of a sum of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Example of a vector multiplied by a value of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Example of a vector multiplied by a value of 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Example of a vector multiplied by a value of -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Example of a convex shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Example of a concave shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Example of a self-intersecting polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Projecting the point P onto the line r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Projecting a line onto the axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

12 Unit Circle definition of sine and cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

13 Graphical plotting of the angle of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

14 Image of a coordinate plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

15 Image of a screen coordinate plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

16 Reference image for transformation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

17 Stretching along the x and y axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

18 The result of applying a rotation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

19 Shearing along the x and y axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

20 Running the probability_20 example shows the probability floating around 20% . . . . . . . . . . . . 44

21 Running the probability_le_13 example shows the probability floating around 13% . . . . . . . . . . 45

22 Intuitive representation of our prize pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

23 How we can pack wall information with a 4-bit integer . . . . . . . . . . . . . . . . . . . . . . . . . 57

24 Example of a compiler output (G++) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

25 Python’s REPL Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

26 Results of the simple float precision test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

27 Python 2 has the same issues with precision as C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 67

28 Python 3 doesn’t fare much better when it comes to precision . . . . . . . . . . . . . . . . . . . . . 67

29 Running a random number generator with the same seed will always output the same numbers . . . 70

30 Using the system time as RNG seed guarantees a degree of randomness . . . . . . . . . . . . . . . 71

31 O(n) growth rate, compared to O(n²) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

32 When coefficients have important values, asymptotic complexity may trick us . . . . . . . . . . . . . 78

II



2D Game Development: From Zero To Hero

33 Big-O Estimates, plotted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

34 How O(2n) overpowers lower complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

35 Karnaugh Map for A XOR B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

36 Karnaugh Map where the elements of the two “rectangles” have been marked green and red . . . . . 80

37 Karnaugh Map with a “don’t care” value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

38 Karnaugh Map where we pretend the “don’t care” value is equal to 1 . . . . . . . . . . . . . . . . . 81

39 First Rectangle in the Karnaugh map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

40 Second Rectangle in the Karnaugh map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

41 A more complex Karnaugh map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

42 First rectangle of the more complex Karnaugh map . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

43 Second rectangle of the more complex Karnaugh map . . . . . . . . . . . . . . . . . . . . . . . . . 83

44 Guided Exercise: Karnaugh Map (1/4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

45 Guided Exercise: Karnaugh Map (2/4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

46 Guided Exercise: Karnaugh Map (3/4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

47 Guided Exercise: Karnaugh Map (4/4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

48 Example of a diamond problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

49 How an object may look using inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

50 How inheritance can get complicated quickly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

51 How components make things a bit simpler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

52 Example of a use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

53 Example of an actor hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

54 Example of a use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

55 Example of a use case hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

56 Example of a use case extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

57 Example of a use case inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

58 Example of a sub-use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

59 Example of classes in UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

60 Defining an interface in UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

61 Interface Realization in UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

62 Relationships between classes in an UML Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

63 Example of inheritance in UML class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

64 Example of interface realization in UML class diagram . . . . . . . . . . . . . . . . . . . . . . . . . 99

65 Example of association in UML class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

66 Example of aggregation and composition in UML class diagrams . . . . . . . . . . . . . . . . . . . .100

67 Example of dependency in UML class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

68 Example of an activity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

69 Example of activity diagrams start and end nodes . . . . . . . . . . . . . . . . . . . . . . . . . . .102

70 Example of Action in activity diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

71 Example of decision, using hexagons to represent the condition . . . . . . . . . . . . . . . . . . . .103

72 Example of loops, using guards to represent the condition . . . . . . . . . . . . . . . . . . . . . . .103

LIST OF FIGURES III



2D Game Development: From Zero To Hero

73 Example of how nested loops and conditions are performed . . . . . . . . . . . . . . . . . . . . . .104

74 Example of concurrent processes in activity diagrams . . . . . . . . . . . . . . . . . . . . . . . . .104

75 Example of swimlanes in activity diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

76 Example of signals in activity diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

77 Example of a note inside of an activity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

78 Example of a sequence diagram lifeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

79 Some alternative shapes for participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

80 Messages in a sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

81 Object instantiation and destruction in a sequence diagram . . . . . . . . . . . . . . . . . . . . . .109

82 A loop grouping in a sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

83 Example of notes in a sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

84 Graphical representation of a simple graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

85 Example of a tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

86 Order in which the nodes are visited during DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

87 Example tree that will be traversed by DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

88 Order in which the nodes are visited during BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

89 Dynamic Arrays Reference Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

90 Adding an element at the beginning of a Dynamic Array . . . . . . . . . . . . . . . . . . . . . . . .120

91 Adding an element at the end of a Dynamic Array . . . . . . . . . . . . . . . . . . . . . . . . . . .121

92 Adding an element at an arbitrary position of a Dynamic Array . . . . . . . . . . . . . . . . . . . . .121

93 Linked List Reference Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

94 Double-Ended Linked List Reference Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

95 Inserting a new node at the beginning of a linked list . . . . . . . . . . . . . . . . . . . . . . . . . .123

96 Inserting a new node at the end of a (double-ended) linked list . . . . . . . . . . . . . . . . . . . . .123

97 Inserting a new node at an arbitrary position in a (double-ended) linked list . . . . . . . . . . . . . .123

98 Doubly Linked List Reference Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

99 Hash Table Reference Image (Hash Table with Buckets) . . . . . . . . . . . . . . . . . . . . . . . . .125

100 Binary Search Tree Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

101 Heap Reference Image (Min-Heap) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

102 How a stack works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

103 Array and linked list implementations of a stack . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

104 How a queue works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

105 Array and linked list implementation of a queue . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

106 How a circular queue works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

107 Array and linked list implementation of a circular queue . . . . . . . . . . . . . . . . . . . . . . . .131

108 The “easy way” of dealing with frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

109 A sample sprite sheet with the same frames as before . . . . . . . . . . . . . . . . . . . . . . . . .132

110 Singly-Linked List has no redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

111 A doubly linked list is an example of redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

112 In a multi-processing environment, each CPU takes care of a task . . . . . . . . . . . . . . . . . . .136

LIST OF FIGURES IV



2D Game Development: From Zero To Hero

113 In multi-threading, the CPU uses I/O wait time to take care of another task . . . . . . . . . . . . . .136

114 Two threads and a shared variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

115 Thread 1 reads the variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

116 While Thread 1 is working, Thread 2 reads the variable . . . . . . . . . . . . . . . . . . . . . . . . .139

117 Thread 1 writes the variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

118 Thread 2 writes the variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

119 Both Threads Terminated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

120 How mutex works (1/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

121 How mutex works (2/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

122 How mutex works (3/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

123 How mutex works (4/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

124 How mutex works (5/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

125 How mutex works (6/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

126 How mutex works (7/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

127 How mutex works (8/8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

128 How an arcade machine usually looks like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

129 A portable console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

130 A personal computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

131 How many abstraction layers are used just for a game to be able to play sounds . . . . . . . . . . .146

132 A smartphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

133 Fully fledged games can run in your browser nowadays . . . . . . . . . . . . . . . . . . . . . . . .147

134 How to approach improvements on your game . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

135 Diagram of the waterfall life cycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

136 Diagram of the incremental life cycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

137 High-level diagram of the evolutionary life cycle model . . . . . . . . . . . . . . . . . . . . . . . . .168

138 Diagram of the evolutionary life cycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

139 Example of a Kanban Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

140 An example screen from Git, a version control system . . . . . . . . . . . . . . . . . . . . . . . . .172

141 UML of the program which we’ll calculate the cyclomatic complexity of . . . . . . . . . . . . . . . .173

142 Flow diagram of the program we’ll calculate the cyclomatic complexity of . . . . . . . . . . . . . . .174

143 UML Diagram of the input-update-draw abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . .190

144 An example of screen tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

145 A small example of the “painter’s algorithm” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197

146 How not clearing the screen can create glitches . . . . . . . . . . . . . . . . . . . . . . . . . . . .198

147 Another type of glitch created by not clearing the screen . . . . . . . . . . . . . . . . . . . . . . . .198

148 Reference image for Point-Circle Collision detection . . . . . . . . . . . . . . . . . . . . . . . . . .201

149 Reference image for Circle-Circle collision detection . . . . . . . . . . . . . . . . . . . . . . . . . .203

150 Example used in the AABB collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

151 Top-Bottom Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

152 Top-Bottom Check is not enough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

LIST OF FIGURES V



2D Game Development: From Zero To Hero

153 An example of a left-right check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

154 Example of the triangle inequality theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

155 Example of a degenerate triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

156 Point/Triangle Collision Detection: division into sub-triangles . . . . . . . . . . . . . . . . . . . . . .211

157 Example image for line/line collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

158 Example of a Jordan Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218

159 A simple case where a point is outside the polygon . . . . . . . . . . . . . . . . . . . . . . . . . . .219

160 A simple case where a point is inside the polygon . . . . . . . . . . . . . . . . . . . . . . . . . . .219

161 How a non-convex polygon makes everything harder . . . . . . . . . . . . . . . . . . . . . . . . . .220

162 Decomposing a polygon into triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220

163 Example of a polygon with its bounding box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

164 Example image used for circle/polygon collision detection . . . . . . . . . . . . . . . . . . . . . . .226

165 An edge case of the circle/polygon check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

166 Example image used for line/polygon collision detection . . . . . . . . . . . . . . . . . . . . . . . .228

167 Example image used for polygon/polygon collision detection . . . . . . . . . . . . . . . . . . . . . .229

168 How a non-convex polygon still makes everything harder . . . . . . . . . . . . . . . . . . . . . . .231

169 Counting how many times we hit the perimeter gives us the result . . . . . . . . . . . . . . . . . . .231

170 Issues with vertices make everything even harder . . . . . . . . . . . . . . . . . . . . . . . . . . .232

171 Triangulating a non-convex polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232

172 Two Bitmasks that will be used to explain pixel-perfect collision . . . . . . . . . . . . . . . . . . . .233

173 Two Bitmasks colliding, the ‘AND’ operations returning true are highlighted in white . . . . . . . . . .233

174 Example for collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

175 Graphical example of a quad tree, overlaid on the reference image . . . . . . . . . . . . . . . . . .236

176 A quad tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

177 Quad trees as spacial acceleration structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

178 Redundancy in quad-tree pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

179 How an AABB-tree would process our example image . . . . . . . . . . . . . . . . . . . . . . . . .239

180 How a possible AABB-tree structure would look like . . . . . . . . . . . . . . . . . . . . . . . . . . .239

181 Example of a search in an AABB-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

182 Querying an AABB-tree (1/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

183 Querying an AABB-tree (2/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

184 Querying an AABB-tree (3/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

185 Example tile-based level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

186 Tile-based example: falling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

187 Example tile-based level with a bigger object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244

188 Tile-based example with a bigger object: falling . . . . . . . . . . . . . . . . . . . . . . . . . . . .244

189 Example of a hitbox (red) and a hurtbox (blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

190 Images used as a reference for collision reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . .247

191 How the naive method reacts to collisions against a wall . . . . . . . . . . . . . . . . . . . . . . . .248

192 How the naive method reacts to collisions against the ground . . . . . . . . . . . . . . . . . . . . .249

LIST OF FIGURES VI



2D Game Development: From Zero To Hero

193 Example of shallow-axis based reaction on a horizontal plane . . . . . . . . . . . . . . . . . . . . .249

194 Example of shallow-axis based reaction on a vertical plane . . . . . . . . . . . . . . . . . . . . . . .250

195 How the the interleaving method reacts to collisions on a horizontal plane . . . . . . . . . . . . . . .252

196 Example of the “Bullet through paper” problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .254

197 How velocity changing direction can teleport you . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

198 Example of how you can draw a line between two convex non-colliding polygons . . . . . . . . . . .256

199 Why the SAT doesn’t work with concave polygons . . . . . . . . . . . . . . . . . . . . . . . . . . .256

200 How the SAT algorithm works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

201 Finding the axes for the SAT (1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258

202 Finding the axes for the SAT (2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258

203 Projecting the polygons onto the axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259

204 Projecting our projections onto the x and y axes . . . . . . . . . . . . . . . . . . . . . . . . . . . .260

205 How Ray Casting Works: Gun (1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261

206 How Ray Casting Works: Gun (2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261

207 How a scene tree looks (specifically in Godot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262

208 Example of a ship attack formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

209 What happens when the ship attack formation rotates . . . . . . . . . . . . . . . . . . . . . . . . .263

210 Reference Image for Screen Space and Game Space . . . . . . . . . . . . . . . . . . . . . . . . . .264

211 How a person sees things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265

212 How videogame cameras see things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

213 Example of an horizontally-tracking camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

214 Example of a full-tracking camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

215 Example of camera trap-based system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

216 Example of look-ahead camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

217 How the camera may end up showing off-map areas . . . . . . . . . . . . . . . . . . . . . . . . . .269

218 Example of how to induce lateral thinking with environmental damage . . . . . . . . . . . . . . . .273

219 Example of how to induce lateral thinking by “breaking the fourth wall” . . . . . . . . . . . . . . . .273

220 Example of secret-in-secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274

221 Example Scheme of linear gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

222 Example Scheme of branching gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

223 Example Scheme of parallel gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280

224 Example Scheme of threaded gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280

225 Example Scheme of episodic gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

226 Example Scheme of looping gameplay with a overarching story . . . . . . . . . . . . . . . . . . . .282

227 Example of a telegraphed screen-filling attack in a shooter . . . . . . . . . . . . . . . . . . . . . . .286

228 A pixel perfect detection would trigger in this case . . . . . . . . . . . . . . . . . . . . . . . . . . .291

229 A smaller hitbox may save the player some frustration . . . . . . . . . . . . . . . . . . . . . . . . .292

230 A bomb spawned behind a chest, drawn in a realistic order . . . . . . . . . . . . . . . . . . . . . . .292

231 Moving the bomb in front of the chest may ruin immersion . . . . . . . . . . . . . . . . . . . . . . .293

232 Highlighting the hidden part of a danger can be useful . . . . . . . . . . . . . . . . . . . . . . . . .293

LIST OF FIGURES VII



2D Game Development: From Zero To Hero

233 Making objects transparent is a solution too . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293

234 The “color wheel” for screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

235 An example of an RGB picker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298

236 A simplified “slice” of an HSV representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

237 More slices of the HSV representation show how value changes . . . . . . . . . . . . . . . . . . . .299

238 The color star shows how complementary colors are on opposite sides . . . . . . . . . . . . . . . .301

239 Reference image that we will for bit depth comparison . . . . . . . . . . . . . . . . . . . . . . . . .302

240 Reference image, quickly converted to 1-bit color depth . . . . . . . . . . . . . . . . . . . . . . . .302

241 Reference image, converted to 2-bit color depth in CGA style . . . . . . . . . . . . . . . . . . . . .302

242 Reference image, converted to a 4-bit color depth in EGA style . . . . . . . . . . . . . . . . . . . .303

243 Reference image, converted to an 8-bit color depth . . . . . . . . . . . . . . . . . . . . . . . . . .303

244 Indexed transparency takes a color and “marks it” as transparent . . . . . . . . . . . . . . . . . . .305

245 Example sprite that gets padded to match hardware constraints . . . . . . . . . . . . . . . . . . . .307

246 Example spritesheet that gets padded to match hardware constraints . . . . . . . . . . . . . . . . .308

247 Two platforms in a spritesheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308

248 Two platforms in a spritesheet after heavy compression . . . . . . . . . . . . . . . . . . . . . . . .309

249 Windowed Game Example - A 640x480 game in a 1920x1080 Window . . . . . . . . . . . . . . . . .309

250 Fullscreen Game Example - Recalculating items positions according to the window size . . . . . . . .310

251 Fullscreen Game Example - Virtual Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310

252 Dithering example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311

253 Dithering Table Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311

254 Some more dithering examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312

255 Which spaceship is easier to spot at a glance? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314

256 How contrast and detail can help distinguishing foreground and background . . . . . . . . . . . . .315

257 Breaking down the image allows us to see the differences between the layers . . . . . . . . . . . .315

258 A diagram to show how each section affects our perception of a layer . . . . . . . . . . . . . . . . .316

259 A texture (on the left), with a possible normal map (on the right) . . . . . . . . . . . . . . . . . . . .318

260 Aseprite’s normal mapping color picker (both in its normal and discrete versions) . . . . . . . . . . .318

261 A box that will be used to show how normal maps influence light . . . . . . . . . . . . . . . . . . . .319

262 How the lack of normal mapping makes lighting look artificial . . . . . . . . . . . . . . . . . . . . .319

263 How normal mapping changes lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319

264 A more detailed normal map results in better lighting . . . . . . . . . . . . . . . . . . . . . . . . .319

265 Example of tile “alternatives” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

266 Tile “Rotation Trick” (1/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

267 Tile “Rotation Trick” (2/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321

268 Tile “Rotation Trick” (3/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321

269 Example of black and transparent tileset used in “inside rooms” . . . . . . . . . . . . . . . . . . . .322

270 Example of incomplete “inside room” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

271 Example of “inside room” with the black/transparent overlay . . . . . . . . . . . . . . . . . . . . .322

272 How color can completely change an object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

LIST OF FIGURES VIII



2D Game Development: From Zero To Hero

273 Graphical Representation of Sample Rate (44.1KHz) . . . . . . . . . . . . . . . . . . . . . . . . . .324

274 Graphical Representation of Sample Rate (8KHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

275 Example of audio clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326

276 Example of AM Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327

277 Example of FM Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327

278 How a sine wave looks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

279 How a square wave looks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

280 How a triangle wave looks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

281 How a sawtooth wave looks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

282 How a noise wave looks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

283 Representation of an ADSR Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

284 Attack on ADSR Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

285 Decay on ADSR Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

286 Sustain on ADSR Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332

287 Release on ADSR Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332

288 A freeze frame of a C64 song, you can see the instruments changing . . . . . . . . . . . . . . . . .335

289 Example of a piano roll in LMMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

290 Example of a piano roll in FamiStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

291 A screen from MilkyTracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340

292 Simple overview of a tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340

293 How each tracker channel is divided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

294 A single bar in our basic rhythm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342

295 A basic four on the floor rhythm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342

296 Four on the floor with off-beat hi-hats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

297 A simple rock beat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

298 Example of a serif font (DejaVu Serif) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

299 Example of a sans-serif font (DejaVu Sans) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

300 Example of a proportional font (DejaVu Serif) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

301 Example of a monospaced font (Inconsolata) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

302 A simple spritesheet for rendering text using textures . . . . . . . . . . . . . . . . . . . . . . . . .345

303 Indexing our spritesheet for rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345

304 Godot’s “Visual Shader” Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348

305 The UML diagram for a singleton pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

306 A naive implementation of a local file upload system . . . . . . . . . . . . . . . . . . . . . . . . . .353

307 A naive implementation of a file upload system on S3 . . . . . . . . . . . . . . . . . . . . . . . . .353

308 Using Interfaces and DI to build a flexible file upload . . . . . . . . . . . . . . . . . . . . . . . . . .354

309 Possible class structure for a DI file upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354

310 Diagram of the Prototype Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

311 UML Diagram of the Flyweight pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356

312 Diagram of the Component Design Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357

LIST OF FIGURES IX



2D Game Development: From Zero To Hero

313 Diagram of the Decorator Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359

314 Diagram of the Object Adapter Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360

315 Diagram of the Class Adapter Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

316 Diagram of the Facade Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

317 Diagram of the Proxy Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363

318 UML diagram for the Command Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365

319 The UML diagram of the observer pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

320 The UML diagram of the strategy pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368

321 UML Diagram of the Chain of Responsibility Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .369

322 Diagram of a character’s state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373

323 Diagram of a menu system’s state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373

324 Example of a simple menu stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

325 Some examples of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

326 Map we will create a navigation mesh on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392

327 Dividing the map into many convex polygons and labelling them . . . . . . . . . . . . . . . . . . .393

328 Creating the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393

329 The final data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394

330 Example of Manhattan distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394

331 Example of Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395

332 Pathfinding Algorithms Reference Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .396

333 Pathfinding Algorithms Heuristics Reference Image . . . . . . . . . . . . . . . . . . . . . . . . . . .396

334 Simple wandering algorithm 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397

335 Simple wandering algorithm 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397

336 This maze breaks our wandering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398

337 The path taken by the greedy “Best First” algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .403

338 The path taken by the Dijkstra Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404

339 Finite state machine representing an enemy AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

340 Example of a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

341 Example of a behaviour tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407

342 How the Midpoint Displacement Algorithm Works (1/4) . . . . . . . . . . . . . . . . . . . . . . . . .412

343 How the Midpoint Displacement Algorithm Works (2/4) . . . . . . . . . . . . . . . . . . . . . . . . .412

344 How the Midpoint Displacement Algorithm Works (3/4) . . . . . . . . . . . . . . . . . . . . . . . . .413

345 How the Midpoint Displacement Algorithm Works (4/4) . . . . . . . . . . . . . . . . . . . . . . . . .413

346 How the diamond-square algorithm works (1/5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415

347 How the diamond-square algorithm works (2/5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416

348 How the diamond-square algorithm works (3/5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416

349 How the diamond-square algorithm works (4/5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417

350 How the diamond-square algorithm works (5/5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417

351 How the recursive backtracker algorithm works (1) . . . . . . . . . . . . . . . . . . . . . . . . . . .418

352 How the recursive backtracker algorithm works (2) . . . . . . . . . . . . . . . . . . . . . . . . . . .418

LIST OF FIGURES X



2D Game Development: From Zero To Hero

353 How the recursive backtracker algorithm works (3) . . . . . . . . . . . . . . . . . . . . . . . . . . .419

354 How the recursive backtracker algorithm works (4) . . . . . . . . . . . . . . . . . . . . . . . . . . .419

355 How the Randomized Kruskal’s Algorithm Works (1/6) . . . . . . . . . . . . . . . . . . . . . . . . .424

356 How the Randomized Kruskal’s Algorithm Works (2/6) . . . . . . . . . . . . . . . . . . . . . . . . .424

357 How the Randomized Kruskal’s Algorithm Works (3/6) . . . . . . . . . . . . . . . . . . . . . . . . .424

358 How the Randomized Kruskal’s Algorithm Works (4/6) . . . . . . . . . . . . . . . . . . . . . . . . .425

359 How the Randomized Kruskal’s Algorithm Works (5/6) . . . . . . . . . . . . . . . . . . . . . . . . .425

360 How the Randomized Kruskal’s Algorithm Works (6/6) . . . . . . . . . . . . . . . . . . . . . . . . .425

361 How the Recursive Division Algorithm Works (1/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .426

362 How the Recursive Division Algorithm Works (2/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .426

363 How the Recursive Division Algorithm Works (3/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .427

364 How the Recursive Division Algorithm Works (4/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .427

365 How the Recursive Division Algorithm Works (5/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .427

366 How the Recursive Division Algorithm Works (6/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .428

367 The bias of Recursive Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428

368 How the Binary Tree Maze generation works (1/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .429

369 How the Binary Tree Maze generation works (2/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .429

370 How the Binary Tree Maze generation works (3/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .429

371 How the Binary Tree Maze generation works (4/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .430

372 How the Binary Tree Maze generation works (5/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .430

373 How the Binary Tree Maze generation works (6/6) . . . . . . . . . . . . . . . . . . . . . . . . . . .430

374 How Eller’s Maze Generation Algorithm Works (1/7) . . . . . . . . . . . . . . . . . . . . . . . . . .431

375 How Eller’s Maze Generation Algorithm Works (2/7) . . . . . . . . . . . . . . . . . . . . . . . . . .431

376 How Eller’s Maze Generation Algorithm Works (3/7) . . . . . . . . . . . . . . . . . . . . . . . . . .431

377 How Eller’s Maze Generation Algorithm Works (4/7) . . . . . . . . . . . . . . . . . . . . . . . . . .431

378 How Eller’s Maze Generation Algorithm Works (5/7) . . . . . . . . . . . . . . . . . . . . . . . . . .431

379 How Eller’s Maze Generation Algorithm Works (6/7) . . . . . . . . . . . . . . . . . . . . . . . . . .432

380 How Eller’s Maze Generation Algorithm Works (7/7) . . . . . . . . . . . . . . . . . . . . . . . . . .432

381 Example of Random Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433

382 Example of a tileset and a tilemap drawn with it . . . . . . . . . . . . . . . . . . . . . . . . . . . .442

383 Simple structure of a hexmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443

384 The outer circle or an hexagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443

385 The size of an hexagon, calculated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444

386 Making a hexmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445

387 A simple isometric tiles and a tilemap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445

388 Demonstration of an image with loop points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446

389 How we can split our game into layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .448

390 Rough UML diagram of a multi-threaded loading screen . . . . . . . . . . . . . . . . . . . . . . . .451

391 Example chart of how movement without inertia looks . . . . . . . . . . . . . . . . . . . . . . . . .452

392 Example chart of how movement without inertia looks: reversing directions . . . . . . . . . . . . . .452

LIST OF FIGURES XI



2D Game Development: From Zero To Hero

393 Example chart of how movement with inertia looks . . . . . . . . . . . . . . . . . . . . . . . . . . .453

394 Example of character running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .453

395 Applying an acceleration to a character running . . . . . . . . . . . . . . . . . . . . . . . . . . . .454

396 Applying an acceleration frame by frame leads to the feeling of inertia . . . . . . . . . . . . . . . .454

397 What would be a good collision response for this situation? . . . . . . . . . . . . . . . . . . . . . . .456

398 Corner correction makes for a more fluid experience . . . . . . . . . . . . . . . . . . . . . . . . . .456

399 Plotting a physics-accurate jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .458

400 Plotting a jump with enhanced gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459

401 Plotting a jump with multiple gravity changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460

402 Example of how jump buffering would work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461

403 Example of how coyote time would work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462

404 Example of how timed jumps would work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463

405 A simple example of fake height in RPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465

406 How few collisions may “sell” the effect of height . . . . . . . . . . . . . . . . . . . . . . . . . . .465

407 A more complex example of fake height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465

408 Even with complex tilemaps, the texture sells the height effect . . . . . . . . . . . . . . . . . . . .466

409 Reference image for video lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467

410 Reference image for audio lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467

411 Plotting amplitude against time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468

412 Plotting frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469

413 Example of how to better “highlight” bullets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469

414 An example of a Bullet Hell ship hitbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470

415 Example of a matrix, saved as “array of arrays” . . . . . . . . . . . . . . . . . . . . . . . . . . . .474

416 What happens when deleting a match immediately . . . . . . . . . . . . . . . . . . . . . . . . . . .477

417 A Flat line difficulty curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482

418 A linearly increasing difficulty curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .483

419 As the player learns to predict, the difficulty curve changes from our design . . . . . . . . . . . . . .483

420 A Logarithmic difficulty curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484

421 An exponential difficulty curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484

422 A linearly increasing wavy difficulty curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485

423 A Logarithmically increasing wavy difficulty curve . . . . . . . . . . . . . . . . . . . . . . . . . . .486

424 A simple wavy difficulty interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487

425 A widening and wavy difficulty interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487

426 A widening wavy difficulty interval with a logarithmic trend . . . . . . . . . . . . . . . . . . . . . .488

427 A sawtooth difficulty curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .489

428 Difficulty spikes are not good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .489

429 A simplified vision of supply and demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .491

430 Example of a P2P connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495

431 Two cheaters meet in P2P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495

432 What would happen if one of the Peers had the authoritative game state . . . . . . . . . . . . . . .496

LIST OF FIGURES XII



2D Game Development: From Zero To Hero

433 Example of a dedicated server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496

434 Two cheaters vs. Dedicated server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .497

435 How the effort put in automated testing can give good returns . . . . . . . . . . . . . . . . . . . . .507

436 Using Valgrind’s Callgrind tool and Kcachegrind we can see what is bogging down our game . . . . .511

437 Not putting off-screen objects in the drawing queue can be a good optimization . . . . . . . . . . . .513

438 An example screen from LLVM’s scan-build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515

439 A screenshot from Valgrind, looks like we have a memory leak here . . . . . . . . . . . . . . . . . .515

440 A screenshot from Godot’s profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515

441 A resource pool instantiates objects and “keeps them” ready when needed . . . . . . . . . . . . . .516

442 Pulling an object from a resource pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516

443 Returning an object from a resource pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517

444 How a lookup table works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517

445 How a simple memoization pattern works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .518

446 How a more complex memoization pattern works . . . . . . . . . . . . . . . . . . . . . . . . . . . .519

447 Time taken by the IF code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527

448 Time taken by the Switch code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527

449 How first impressions leave a mark, even when it comes to price . . . . . . . . . . . . . . . . . . .532

450 What a simple “speedrun mode” may look like . . . . . . . . . . . . . . . . . . . . . . . . . . . . .545

451 What a mode advanced “speedrun mode” may look like . . . . . . . . . . . . . . . . . . . . . . . .546

452 Example picture of Tic-Tac-Toe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563

453 Example of a “Space Invaders”-style game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565

454 Example picture of a breakout-style game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .567

455 Biased Bouncing for breakout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569

456 Possible Shooter Arena Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569

List of Code Listings
1 Example code listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 1 (out of 5) will be extracted with about 20% probability . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 A number less or equal than 13 (out of 100) has 13% probability of appearing . . . . . . . . . . . . . . 44

4 How to implement a tiered prize pool selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 A possible implementation of a luck stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Counting from n to 0 using a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Counting from n to 0 using recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Counting from 0 to n using head recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 A simple float precision test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

10 A simple random number generation program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11 A random number generation program that uses system time as seed . . . . . . . . . . . . . . . . . . 71

12 Example of an O(1) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

13 Example of an O(log(n)) algorithm (Binary Search) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

LIST OF CODE LISTINGS XIII



2D Game Development: From Zero To Hero

14 Example of an O(n) algorithm (printing of a list) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

15 Example of an O(n²) algorithm (bubble sort) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

16 A simple O(1) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

17 A simple o(n) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

18 The bubble sort algorithm, an O(n²) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

19 A more complex algorithm to estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

20 An example of inheritance: Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

21 An example of inheritance: A coffee machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

22 Example of an entity declared as YAML data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

23 Example of an entity declared as JSON data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

24 A possible implementation of a tree class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

25 Pre-order traversal of a tree using DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

26 In-order traversal of a tree using DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

27 Post-order traversal of a tree using DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

28 Traversal of a tree using BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

29 Counting the elements in a list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

30 Counting the elements in a list with data redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

31 Finding the previous element in a singly linked list . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

32 Game Loop example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

33 Game loop with fixed timesteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

34 Game loop with variable time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

35 Game loop with Semi-Fixed time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

36 Game loop with Frame Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

37 Point to point collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

38 Shortened version of a point to point collision detection . . . . . . . . . . . . . . . . . . . . . . . . . 200

39 Point to point collision detection with epsilon values . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

40 Point to circle collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

41 Shorter version of a point to circle collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

42 Circle to Circle Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

43 Shorter Version of a Circle to Circle Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 204

44 Axis-Aligned Bounding Box Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

45 Line to Point Collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

46 Partial Implementation of a Line to Circle Collision Detection . . . . . . . . . . . . . . . . . . . . . . . 208

47 Line to circle collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

48 Point/Rectangle collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

49 Point/Triangle Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

50 Point/Triangle Collision Detection with epsilon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

51 Rectangle to Circle Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

52 Implementation of the line/line collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

53 Implementation of the line/rectangle collision detection . . . . . . . . . . . . . . . . . . . . . . . . . 217

LIST OF CODE LISTINGS XIV



2D Game Development: From Zero To Hero

54 How to find the bounding box of a polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

55 A (not so) simple polygon class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

56 Polygon vs Point collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

57 Polygon vs Circle collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

58 Polygon vs Line collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

59 Polygon vs Polygon collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

60 Example of a possibile implementation of pixel perfect collision detection . . . . . . . . . . . . . . . . 233

61 Brute Force Method of collision search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

62 Converting player coordinates into tile coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

63 Tile-based collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

64 Tile + Offset collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

65 Code for the naive collision reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

66 Possible implementation for a shallow axis collision reaction . . . . . . . . . . . . . . . . . . . . . . . 250

67 Code for interleaving movement and collision reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 251

68 Example of the ”snapshot” collision reaction method . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

69 How FM music may be saved on an old console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

70 Example of swappable sound effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

71 A simple algorithm to create a text using a texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

72 Simple GLSL Fragment shader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

73 Example of a singleton pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

74 Example of a singleton pattern with lazy loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

75 Code for a flyweight pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

76 Example Implementation Of the Component Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

77 Example Implementation Of the Facade Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

78 Example Implementation Of the Proxy Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

79 Example code for the Command Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

80 Code for an observer pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

81 Code for a strategy pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

82 Code for a chain of responsibility pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

83 A simple finite state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

84 An example of usage of a FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

85 A simple particle class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

86 A more complex particle class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

87 A simple particle emitter class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

88 A more complex (and complete) particle emitter class . . . . . . . . . . . . . . . . . . . . . . . . . . 380

89 A particle with mass and force application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

90 A simple timer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

91 A naive approach to account for leftover time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

92 A possible solution to account for leftover time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

93 Another possible solution to account for leftover time . . . . . . . . . . . . . . . . . . . . . . . . . . 386

LIST OF CODE LISTINGS XV



2D Game Development: From Zero To Hero

94 Linear Tweening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

95 Example of a simple easing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

96 Ease-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

97 Ease-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

98 Ease-in-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

99 Clamping values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

100 A bouncy tween function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

101 Possible representation of a 2D grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

102 Example code calculating the Manhattan distance on a 2D grid . . . . . . . . . . . . . . . . . . . . . 395

103 Example code calculating the Euclidean distance on a 2D grid . . . . . . . . . . . . . . . . . . . . . . 395

104 Implementation of a simple wandering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

105 Implementation of a better wandering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

106 The node structure used in the greedy ”Best First” algorithm . . . . . . . . . . . . . . . . . . . . . . . 401

107 The greedy ”Best First” algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

108 The node structure used in the Dijkstra Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

109 The Dijkstra Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

110 The A* Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

111 Example code for ”jump when player shoots” AI pattern . . . . . . . . . . . . . . . . . . . . . . . . . 408

112 Example code for a ”ranged” AI pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

113 Example code for a ”melee” AI pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

114 Example implementation of the midpoint displacement algorithm . . . . . . . . . . . . . . . . . . . . 413

115 Example implementation of recursive backtracker maze generation . . . . . . . . . . . . . . . . . . . 419

116 Example implementation of recursive backtracker with an explicit stack . . . . . . . . . . . . . . . . . 421

117 Example implementation of randomized noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

118 Example procedural weapon creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

119 Example Randomized weapon creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

120 Example of I-Frames Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

121 Example of an infinitely scrolling background implementation . . . . . . . . . . . . . . . . . . . . . . 446

122 Example of parallax scrolling implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

123 Code for simulating inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

124 Possible implementation of a simple corner correction . . . . . . . . . . . . . . . . . . . . . . . . . . 457

125 Code for applying gravity to an object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

126 Code for jump with enhanced gravity while falling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

127 Code for jump with more gravity while falling and less when peaking . . . . . . . . . . . . . . . . . . 460

128 Code for jumping without buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

129 Jump buffering example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

130 Coyote time code example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

131 Example code of how timed jumps work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

132 Finding horizontal matches in a match-3 game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

133 Finding vertical matches in a match-3 game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

LIST OF CODE LISTINGS XVI



134 Eliminating matches and preparing the tween table . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

135 Creating new tiles and preparing another tween table . . . . . . . . . . . . . . . . . . . . . . . . . . 478

136 Double Engine Movement Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

137 Single Engine Movement Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

138 An example of memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

139 An eager object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

140 A lazy object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

141 Example on how to optimize entities with a dirty bit . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

142 IFs vs Switch - IF Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

143 IFs vs Switch - Switch Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526




	Foreword
	Introduction
	Why another game development book?
	Conventions used in this book
	Logic Conventions
	Code Listings
	Block Quotes
	Boxes
	Engine Used
	About editions

	Structure of this Book

	The Maths Behind Game Development
	Some useful symbols
	The modulo operator
	Powers and Roots
	Equations
	You can add or subtract any number on both sides
	You can multiple or divide any non-zero number on both sides

	Exponentiations and Logarithms
	Limits
	Derivatives
	The Cartesian Plane
	Vectors
	Adding and Subtracting Vectors
	Scaling Vectors
	Dot Product
	Vector Length and Normalization
	“Clamping” a Vector

	Geometry
	Convex vs Concave polygons
	Self-intersecting polygons
	Straight Lines and their equations
	Getting the equation of a straight line, given two points
	Getting the equation, given the slope and a point

	Projections
	Projecting arbitrary lines on the axes


	Matrices
	What is a matrix
	Matrix sum and subtraction
	Multiplication by a scalar
	Transposition
	Multiplication between matrices
	Other uses for matrices

	Trigonometry
	Radians vs Degrees
	Sine, Cosine and Tangent
	Pythagorean Trigonometric Identity
	Reflections
	Shifts
	Trigonometric Addition and subtraction
	Double-Angle Formulae
	Inverse Formulas

	Numerical Analysis
	Newton-Raphson method

	Coordinate Systems on computers
	Transformation Matrices
	Stretching
	Rotation
	Choosing the direction of the rotation
	Rotating referred to an arbitrary point

	Shearing

	Basics of Probability
	A simple definition of probability
	Probability of independent events
	Probability of mutually exclusive events
	Probability of non-mutually exclusive events
	Conditional Probability
	Uniform Distributions
	How probability is used in games
	Tiered Prize Pools
	Introducing a “luck” stat



	Some Computer Science Fundamentals
	Number representations
	The most used representations
	Decimal
	Binary
	Octal
	Hexadecimal

	Converting between decimal and binary
	Two’s complement
	Floating point

	Converting between binary and octal
	Gray Code

	Basics of Logic
	Truth tables
	Common operators
	AND
	OR
	NOT
	XOR

	Logic operations vs bitwise operations
	Packing more information with less

	De Morgan’s Laws and Conditional Expressions

	Algorithms
	Recursion
	Programming Languages
	Classifying programming languages
	By how they build
	By Paradigm
	By the way types are determined
	By the “strength” of typing
	By memory management

	Languages available for this book

	Computers are (not) precise
	Catastrophic cancellation

	Random Numbers are not really random
	How to seed a random number generator

	Estimating the complexity of algorithms
	O(1)
	O(log(n))
	O(n)
	O(n·log(n))
	O(n2)
	O(2n)

	A primer on calculating the order of your algorithms
	Some basics
	What happens when we have more than one big-O?
	A problem with asymptotic complexity
	What do we do with recursive algorithms?
	How do big-O estimates compare to each other?

	Simplifying your conditionals with Karnaugh Maps
	“Don’t care”s
	A more complex map
	Guided Exercise

	Object Oriented Programming
	Introduction
	Objects
	Abstraction and Interfaces
	Inheritance and Polymorphism
	Mixins
	The Diamond Problem
	Composition
	Composition vs. Inheritance
	“Composition over Inheritance” design
	Coupling
	The DRY Principle
	SOLID Principles

	Designing entities as data
	Reading UML diagrams
	Use Case Diagrams
	Actors
	Use Cases
	Notes
	Sub-Use Cases

	Class Diagrams
	Classes
	Interfaces
	Relationships between entities of the class diagram
	Notes

	Activity Diagrams
	Start and End Nodes
	Actions
	Decisions (Conditionals) and loops
	Synchronization
	Swimlanes
	Signals
	Notes
	A note on activity diagrams

	Sequence Diagrams
	Lifelines
	Messages
	Object Instantiation and Destruction
	Grouping and loops
	Notes

	Other diagrams

	Generic Programming
	Data Structures
	Graphs
	Trees
	Depth-first Search
	Breadth-first search

	Dynamic Arrays
	Performance Analysis

	Linked Lists
	Performance Analysis

	Doubly-Linked Lists
	Hash Tables
	Binary Search Trees (BST)
	Heaps
	Stacks
	Queues
	Circular Queues

	The principle of locality
	Treating multidimensional structures like one-dimensional ones
	Data Redundancy
	Introduction to Multi-Tasking
	Multi-Threading vs Multi-Processing
	Coroutines

	Introduction to Multi-Threading
	What is Multi-Threading
	Why Multi-Threading?
	Thread Safety
	Race conditions
	Critical Regions

	Ensuring determinism
	Immutable Objects
	Mutex
	Atomic Operations



	A Game Design Dictionary
	Platforms
	Arcade
	Console
	Personal Computer
	Mobile
	Web

	Input Devices
	Mouse and Keyboard
	Gamepad
	Touch Screen
	Dedicated Hardware
	Other Input Devices

	Game Genres
	Shooters
	Strategy
	Platformer
	RPG
	MMO
	Simulation
	Rhythm Games
	Visual novels
	Puzzle games

	Miscellaneous
	Emergent Gameplay


	Project Management Basics and tips
	The figures of game design and development
	Producer/Project Manager
	Game Designer
	Writer
	Developer
	Visual Artist
	Sound Artist
	Marketing/Public Relations Manager
	Tester

	Some general tips
	Be careful of feature creep
	On project duration
	Brainstorming: the good, the bad and the ugly
	On Sequels

	Common Errors and Pitfalls
	Losing motivation
	The “Side Project” pitfall
	Making a game “in isolation”
	(Mis)Handling Criticism
	Misusing of the Digital Millennium Copyright Act

	Not letting others test your game
	Being perfectionist
	Using the wrong engine

	Software Life Cycle Models
	Iteration versus Increment
	Waterfall Model
	Incremental Model
	Evolutionary Model
	Agile Software Development
	User Stories
	Scrum
	Kanban
	ScrumBan

	Lean Development
	Where to go from here

	Version Control
	Metrics and dashboards
	SLOC
	Cyclomatic Complexity
	How cyclomatic complexity is calculated

	Code Coverage
	Code Smells
	Coding Style infractions
	Depth of Inheritance
	Number of methods / fields / variables
	Number of parameters
	Other metrics


	Writing a Game Design Document
	What is a Game Design Document
	Possible sections of a Game Design Document
	Project Description
	Characters
	Storyline
	The theme
	Progression

	Levels and Environments
	Gameplay
	Goals
	Game Mechanics
	Skills
	Items/Powerups
	Difficulty Management and Progression
	Losing Conditions

	Graphic Style and Art
	Sound and Music
	User Interface
	Game Controls
	Accessibility Options
	Tools
	Marketing
	Target Audience
	Available Platforms
	Monetization
	Internationalization and Localization

	Other/Random Ideas

	Where to go from here

	The Game Loop
	The Input-Update-Draw Abstraction
	Input
	Events vs Real Time Input

	Timing your loop
	What is a time step
	Fixed Time Steps
	Variable Time Steps
	Semi-fixed Time Steps
	Frame Limiting
	Frame Skipping/Dropping
	Multi-threaded Loops

	Issues and possible solutions
	Frame/Screen Tearing

	Drawing to screen
	Clearing the screen


	Collision Detection and Reaction
	Why Collision Detection is done in multiple passes
	Narrow-Phase Collision Detection: did it really collide?
	Collision Between Two Points
	Collision Between A Point and a Circle
	Collision Between Two Circles
	Collision Between Two Axis-Aligned Rectangles (AABB)
	Line/Point Collision
	Line/Circle Collision
	Point/Rectangle Collision
	Point/Triangle Collision
	Circle/Rectangle Collision
	Line/Line Collision
	Line/Rectangle Collision
	Point/Polygon Collision
	Jordan Curve Theorem
	Thinking outside the box: polygon triangulation
	Bounding Boxes
	Point/Polygon collision detection using triangulation

	Circle/Polygon Collision
	Line/Polygon Collision
	Polygon/Polygon Collision
	Non-convex polygons collision
	Polygon triangulation: the return

	Pixel-Perfect collision

	Broad-phase collision detection: is a collision even possible?
	The Brute Force Method
	Building Quad Trees
	A more precise definition
	Querying quad trees

	Building AABB-Trees
	Querying AABB-trees

	Collision groups

	Other Collision Detection Methods
	Calculating the position of tiles
	The “Tile + Offset” Method

	Collision Reaction/Correction
	HitBoxes vs HurtBoxes
	Collision Reaction Methods
	A naive approach
	Shallow-axis based reaction method
	Interleaving single-axis movement and collision detection
	The “Snapshot” Method

	When two moving items collide

	Common Issues with time-stepping Collision Detection
	The “Bullet Through Paper” problem
	Precision Issues
	One-way obstacles

	Separating Axis Theorem
	Why only convex polygons?
	How it works
	Finding the axes to analyze
	Projecting the shapes into the axes and exiting the algorithm
	From arbitrary axes to “x and y”


	Ray Casting
	What is Ray Casting?
	Other uses for ray casting: Pseudo-3D environments


	Scene Trees
	What is a scene
	Scene trees and their functionalities
	How scene trees can make drawing entities easier

	Implementing a scene tree

	Cameras
	Screen Space vs. Game Space
	Cameras and projections
	Most used camera transitions and types
	Static Camera
	Grid Camera
	Position-Tracking Camera
	Horizontal-Tracking Camera
	Full-Tracking Camera

	Camera Trap
	Look-Ahead Camera
	Hybrid Approaches

	Clamping your camera position

	Game Design Tips
	Tutorials
	Do not pad tutorials
	Integrate tutorials in the lore
	Let the player explore the controls

	Consolidating and refreshing the game mechanics
	Remind the player about the mechanics they learned
	Introduce new ways to use old mechanics

	Rewarding the player
	Reward the player for their “lateral thinking”
	Reward the player for their tenacity
	Reward the player for exploring
	Reward the player for not immediately following the given direction
	Reward the player for not trusting you entirely
	Reward Backtracking (but don’t make it mandatory!)
	The “lives” system
	1-UPs
	Other approaches


	Loading Screens
	What to put in a loading screen
	Letting the player “exit” the loading screen
	Avoiding a loading screen altogether

	Designing the story and gameplay flow
	Linear Gameplay
	Branching gameplay
	Parallel gameplay
	Threaded gameplay
	Episodic gameplay
	Adding parallel paths
	Looping Gameplay
	Soft-reset mechanics


	Some game genres and their characteristics
	Roguelikes and Rogue-lites
	Use of pseudo-randomness and procedural generation
	Permadeath
	Turn-based Gameplay
	Lack of mode-based gameplay
	Multiple ways to accomplish (or fail!) a task
	Resource Management is key
	Peace was never an option
	Dealing with the unknown


	Tips and Tricks
	General Purpose
	Make that last Health Point count
	Avoiding a decision can be a decision itself
	Telegraphing
	Minigames
	When unlockables are involved, be balanced

	Shooters
	Make the bullets stand out

	RPGs
	Grinding and farming
	Leveling Curves
	“Mastering”


	Perceived Fairness
	You don’t need precise collision detection
	Immediate dangers should be well visible

	Miscellaneous
	You cannot use the “Red Cross” in games
	Auto-saving
	Feedback is important


	Creating your assets
	Assumptions
	Graphics
	Some computer graphics basics
	The “color wheel”
	Color representations
	Primary, Secondary and Tertiary colors
	Analogous Colors
	Complementary Colors
	Color Depth
	Direct Color vs. Indexed Color
	Lossless Formats
	Lossy Formats
	Transparency
	Texture Filtering

	General Tips
	Practice, Practice, Practice…
	References are your friends
	Don’t compare your style to others’
	Study other styles
	Learn to deconstruct objects into shapes

	Sprite sheets
	Sprite Sheet Gotchas

	Virtual Resolution
	Using limited color palettes
	Dithering
	Palette Swapping

	Layering and graphics
	Detail attracts attention
	Use saturation to separate layers further
	Movement is yet another distraction
	Use contrast to your advantage
	Find exceptions
	Summarizing Layering

	Pixel Art
	What pixel art is and what it is not
	Tools
	Layers
	Sub-pixel animation with palette cycling

	Normal Mapping
	A simple example

	Tips and Tricks
	Tiles
	Sprites and icons


	Sounds And Music
	Some audio basics
	Sample Rate
	Bit Depth
	Lossless Formats
	Lossy Formats
	Clipping

	Sound Synthesis
	AM Synthesis
	FM Synthesis
	FM Synthesis vs Sample-based music

	Basic Wave Forms
	Sine Wave
	Square Wave
	Triangle Wave
	Sawtooth Wave
	Noise

	ADSR Envelope
	Attack
	Decay
	Sustain
	Release

	Digital Sound Processing (DSP)
	Reverb
	Pitch Shift
	Filtering
	Doppler Effect

	Simulating older consoles’ audio
	Commodore Vic20
	Commodore 64
	Commodore Amiga
	Sega Master System / GameGear
	Sega Genesis/MegaDrive
	NES
	SNES
	Game Boy
	AdLib / SoundBlaster

	“Swappable” sound effects
	Some audio processing tips
	Prefer cutting over boosting

	DAW Basics
	What is a DAW Software?
	The Piano Roll

	Music Tracker Basics
	What is a Music Tracker Software?
	Samples
	Instruments
	Channels
	Patterns

	Basic Rhythms
	Four on the floor
	Four on the floor with off-beat hi-hats
	A simple rock beat

	Adaptive Music

	Fonts
	Font Categories
	Serif and Sans-Serif fonts
	Proportional and Monospaced fonts

	Using textures to make text
	Using Fonts to make text

	Shaders
	What are shaders
	Shader Programming Languages
	The GLSL Programming Language
	The data types

	Some GLSL Shaders examples


	Design Patterns
	Creational Design Patterns
	Singleton Pattern
	Dependency Injection
	Prototype

	Structural Design Patterns
	Flyweight
	Component/Composite Pattern
	Decorator
	Adapter
	Object Adapter
	Class Adapter

	Facade
	Proxy

	Behavioural Design Patterns
	Command Pattern
	Observer Pattern
	Strategy
	Chain of Responsibility
	Visitor

	Architectural Design Patterns
	Service Locator


	Useful Containers and Classes
	Resource Manager
	Animator
	Finite State Machine
	Menu Stack
	Particle Systems
	Particles
	Emitters
	Force Application

	Timers
	Accounting for “leftover time”
	A naive solution
	A different approach


	Inbetweening
	Bouncing

	Chaining

	Artificial Intelligence in Videogames
	Path Finding
	Representing our world
	2D Grids
	Path nodes
	Navigation meshes

	Heuristics
	Manhattan Distance heuristic
	Euclidean Distance heuristic

	Algorithms
	A simple “Wandering” Algorithm
	A slightly better “Wandering” algorithm
	The Greedy “Best First” Algorithm
	The Dijkstra Algorithm
	The A* Algorithm


	Finite state machines
	Decision Trees
	Behaviour Trees
	Tips and tricks
	“Jump when the player shoots”
	Distance-based patterns
	“Ranged pattern”
	“Melee pattern”



	Other Useful Algorithms
	World Generation
	Midpoint Displacement Algorithm
	Diamond-Square Algorithm
	Maze Generation
	Randomized Depth-First Search (Recursive Backtracker)
	Randomized Kruskal’s Algorithm
	Recursive Division Algorithm
	Binary Tree Algorithm
	Eller’s Algorithm


	Dungeon Generation
	Noise Generation
	Randomized Noise (Static)
	Perlin Noise

	Animation
	Skeleton animation


	Procedural Content Generation
	What is procedural generation (and what it isn’t)
	Advantages and disadvantages
	Advantages
	Less disk space needed
	Larger games can be created with less effort
	Lower budgets needed
	More variety and replayability

	Disadvantages
	Requires more powerful hardware
	Less Quality Control
	Worlds can feel repetitive or “lacking artistic direction”
	You may generate something unusable
	Story and set game events are harder to script


	Where it can be used
	Procedural Generation and Difficulty Management
	Static difficulty
	Adaptive Difficulty
	Rubberbanding

	Static vs. Adaptive Difficulty


	Developing Game Mechanics
	General Purpose
	I-Frames
	Tilemaps
	Rectangular Tilemaps
	Hexagonal Tilemaps
	Isometric Tilemaps

	Scrolling Backgrounds and Parallax Scrolling
	Infinitely Scrolling Backgrounds
	Parallax Scrolling

	Avoid interactions between different input systems
	Sprite Stenciling/Masking
	Loading screens
	Simulating Inertia
	Corner correction

	2D Platformers
	Simulating Gravity
	Avoiding “Floaty Jumps”
	Making jumps “float differently”
	Ladders
	Walking on slanted ground
	Stairs
	Ledge Grabbing
	Jump Buffering
	Coyote Time
	Timed Jumps
	Wall Jumps
	Screen Wrap

	Top-view RPG-Like Games
	Managing height
	Faking it
	Managing height for real


	Rhythm Games
	The world of lag
	Input Lag
	Video Lag
	Audio Lag
	Lag Tests

	Synchronizing with the Music
	Time domain vs. Frequency Domain
	The Fast Fourier Transform
	Beat Detection


	“Bullet Hell” Style Games
	Bullets
	The Ship Hitbox
	Screen-clearing bombs
	Clearing bullets on pattern changes
	Find other chances to clear some bullets
	Turn enemy bullets into collectibles at the end of a boss fight
	The “Chain Meter”
	Managing the player’s death
	The Enemy AI
	Be fair to the player, but also to the computer
	Inertia
	Some examples

	Match-x Games
	Managing and drawing the grid
	Finding and removing Matches
	Why don’t we delete the matches immediately?

	Replacing the removed tiles and applying gravity

	Cutscenes
	Videos
	Scripted Cutscenes


	Balancing Your Game
	Do not annoy the player
	Favour the player when possible
	Difficulty curves
	Simple Lines
	Flat Line
	Linear Increase
	Logarithmic Line
	Exponential Line

	Wave patterns
	Linearly Increasing wave
	Logarithmically Increasing wave

	Interval Patterns
	Simple Interval
	Widening Interval
	Widening Interval with Logarithmic trend

	This is not everything
	Sawtooth pattern
	What not to do
	Beyond difficulty


	Economy
	Supply and Demand
	Money sources and sinks
	Inflation
	Deflation

	A primer on Cheating
	Information-based cheating
	Mechanics-based cheating
	Man-in-the-middle
	Low-level exploits

	How cheating influences gameplay and enjoyability
	Single Player
	Multiplayer
	P2P
	Dedicated Servers


	Cheating protection
	Debug Mode vs Release Mode

	Some common exploits
	Integer Under/Overflow
	How the attack works

	Repeat attacks


	Accessibility in video games
	What accessibility is and what it is not
	UI and HUD Scaling
	Subtitles
	Mappable Buttons
	Button Toggling
	Dyslexia
	Text Spacing
	Fonts

	“Slow Mode”
	Colorblind mode
	No Flashing Lights
	No motion blur
	Reduced Motion
	Assisted Gameplay
	Controller Support
	Some special cases

	Testing your game
	When to test
	Testing “as an afterthought”
	Test-Driven Development
	The “Design to test” approach
	You won’t be able to test EVERYTHING

	Mocking
	Types of testing
	Automated Testing
	Manual Testing

	Unit Testing
	Integration Testing
	Regression Testing
	Playtesting
	In-House Testing
	Closed Beta Testing
	Open Beta Testing
	A/B Testing


	Profiling and Optimization
	Profiling your game
	Does your application really need profiling?
	Does your FPS counter roam around a certain “special” value?
	Is the animation of your game stuttering but the FPS counter is fine?

	First investigations
	Is your game using 100% of the CPU?
	Is your game overloading your GPU?
	Is your game eating up more and more RAM as it’s running?


	Optimizing your game
	Working with references vs. returning values
	Optimizing Drawing
	Off-screen objects

	Reduce the calls to the Engine Routines
	Entity Cleanup and Memory leaks
	Using analyzers to detect Memory Leaks
	Static Scanners
	Dynamic testing tools

	Resource Pools
	Lookup Tables
	Memoization
	Approximations
	Eager vs. Lazy Evaluation
	Eager approach
	Lazy approach

	Detach your updating from drawing
	Be mindful of how you query your data structures

	Tips and tricks
	Be mindful of your “updates”
	Use the right data structures for the job
	Dirty Bit
	Far-Away entities (Dirty Rectangles)
	Tweening is better than animating
	Remove dead code

	Non-Optimizations
	“Switches are faster than IFs”
	Blindly Applying Optimizations


	Marketing your game
	An Important Note: Keep your feet on the ground
	The importance of being consumer-friendly
	Pricing
	Penetrating the market with a low price
	Giving off a “premium” vibe with a higher price
	The magic of “9”
	Launch Prices
	Bundling
	Nothing beats the price of “Free” (Kinda)

	Managing Hype
	Downloadable Content
	DLC: what to avoid
	DLC: what to do

	Digital Rights Management (DRM)
	How DRM can break a game down the line

	Free-to-Play Economies and LootBoxes
	Microtransactions
	The human and social consequences of Lootboxes

	Free-to-Play gaming and Mobile Games

	Assets and asset Flips
	Crowdfunding
	Communication Is Key
	Do not betray your backers
	Don’t be greedy
	Stay on the “safe side” of planning
	Keep your promises, or exceed them
	A striking case: Mighty No. 9

	Engagement vs Fun
	Streamers and Content Creators
	The game developers’ side
	The Streamers’ side
	Other entities and conclusions


	Keeping your players engaged
	Communities
	Forums
	Wikis
	Update Previews
	Speedrunning
	Streaming

	Replayability
	Modding
	Fan games
	Mutators
	Randomizing
	New Game+
	Transmogrification


	Dissecting games: three study cases
	A bad game: Hoshi wo miru hito
	Introduction
	Balance Issues
	You can’t beat starter enemies
	The Damage Sponge
	You can’t run away from battles, but enemies can
	Statistics

	Bad design choices
	You get dropped in the middle of nowhere
	The starting town is invisible
	The Jump Ability
	Items are invisible
	Item management
	Buying Weapons makes you weaker
	Enemy Abilities
	You can soft lock yourself

	Confusing Choices
	Starting level for characters
	Slow overworld movement
	Exiting a dungeon or a town
	The Health Points UI

	Inconveniencing the player
	The battle menu order
	Every menu is a committal
	Password saves
	Each character has their own money stash

	Bugs and glitches
	Moonwalking and save warping
	The final maze
	The endings

	Conclusions

	The first good game - VVVVVV: Slim story and essential gameplay
	A Slim story that holds up great
	Essential gameplay: easy to learn, hard to master
	Diversified challenges
	Graphics
	Amazing soundtrack
	Accessibility Settings
	Post-endgame Modes
	User-generated content
	“Speedrunnability”
	Characters are memorable, even if you don’t see them a lot
	Conclusion

	Another good game - Undertale: A masterclass in storytelling
	The power of choice
	The game doesn’t take itself very seriously (sometimes)
	All the major characters are very memorable
	The game continuously surprises the player
	Player choices influence the game
	Great (and extensive!!) soundtrack
	Conclusion


	Project Ideas
	Tic-Tac-Toe
	Basic Level
	Advanced Level
	Master Level

	Space Invaders
	Basic Level
	Advanced Level
	Master level

	Breakout
	Basic Level
	Advanced Level
	Master Level

	Shooter Arena
	Basic Level
	Advanced level
	Master Level


	Game Jams
	Have Fun
	Stay Healthy
	Stick to what you know
	Hacking is better than planning (But still plan ahead!)
	Graphics? Sounds? Music? FOCUS!
	Find creativity in limitations
	Involve Your Friends!
	Write a Post-Mortem (and read some too!)
	Most common pitfalls in Game Jams

	Where To Go From Here
	Collections of different topics
	Books
	Videos
	Multiple formats

	Pixel Art
	Multiple Formats

	Sound Design
	Multiple Formats

	Game Design
	Books

	Game Development
	Web Resources
	Videos

	References and Cheat Sheets

	Glossary
	Engines, Libraries And Frameworks
	Some other useful tools
	Free assets and resources
	Contributors

